What could go wrong? Discovering and describing failure modes in computer vision
- URL: http://arxiv.org/abs/2408.04471v2
- Date: Tue, 24 Sep 2024 09:58:34 GMT
- Title: What could go wrong? Discovering and describing failure modes in computer vision
- Authors: Gabriela Csurka, Tyler L. Hayes, Diane Larlus, Riccardo Volpi,
- Abstract summary: We formalize the problem of Language-Based Error Explainability (LBEE)
We propose solutions that operate in a joint vision-and-language embedding space.
We show that the proposed methodology isolates nontrivial sentences associated with specific error causes.
- Score: 27.6114923305978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are effective, yet brittle. Even carefully trained, their behavior tends to be hard to predict when confronted with out-of-distribution samples. In this work, our goal is to propose a simple yet effective solution to predict and describe via natural language potential failure modes of computer vision models. Given a pretrained model and a set of samples, our aim is to find sentences that accurately describe the visual conditions in which the model underperforms. In order to study this important topic and foster future research on it, we formalize the problem of Language-Based Error Explainability (LBEE) and propose a set of metrics to evaluate and compare different methods for this task. We propose solutions that operate in a joint vision-and-language embedding space, and can characterize through language descriptions model failures caused, e.g., by objects unseen during training or adverse visual conditions. We experiment with different tasks, such as classification under the presence of dataset bias and semantic segmentation in unseen environments, and show that the proposed methodology isolates nontrivial sentences associated with specific error causes. We hope our work will help practitioners better understand the behavior of models, increasing their overall safety and interpretability.
Related papers
- Failures Are Fated, But Can Be Faded: Characterizing and Mitigating Unwanted Behaviors in Large-Scale Vision and Language Models [7.736445799116692]
In large deep neural networks that seem to perform surprisingly well on many tasks, we also observe a few failures related to accuracy, social biases, and alignment with human values.
We introduce a post-hoc method that utilizes emphdeep reinforcement learning to explore and construct the landscape of failure modes in pre-trained discriminative and generative models.
We empirically show the effectiveness of the proposed method across common Computer Vision, Natural Language Processing, and Vision-Language tasks.
arXiv Detail & Related papers (2024-06-11T10:45:41Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Diagnosing and Rectifying Vision Models using Language [31.588965563961573]
Recent contrastive learning models have demonstrated the ability to learn an embedding space suitable for building strong vision classifiers.
Our work highlights a distinct advantage of this multi-modal embedding space: the ability to diagnose vision classifiers through natural language.
Our proposed method can discover high-error data slices, identify influential attributes and further rectify undesirable model behaviors.
arXiv Detail & Related papers (2023-02-08T18:59:42Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
We conduct a comparative analysis of the visual representations in existing vision-and-language models and vision-only models.
Our empirical observations suggest that vision-and-language models are better at label prediction tasks.
We hope our study sheds light on the role of language in visual learning, and serves as an empirical guide for various pretrained models.
arXiv Detail & Related papers (2022-12-01T05:00:18Z) - Probing via Prompting [71.7904179689271]
This paper introduces a novel model-free approach to probing, by formulating probing as a prompting task.
We conduct experiments on five probing tasks and show that our approach is comparable or better at extracting information than diagnostic probes.
We then examine the usefulness of a specific linguistic property for pre-training by removing the heads that are essential to that property and evaluating the resulting model's performance on language modeling.
arXiv Detail & Related papers (2022-07-04T22:14:40Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
We evaluate how well language models capture the semantics of four tasks for bias: diagnosis, identification, extraction and rephrasing.
Our analyses indicate that language models are capable of performing these tasks to widely varying degrees across different bias dimensions, such as gender and political affiliation.
arXiv Detail & Related papers (2021-12-16T05:36:08Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - CausaLM: Causal Model Explanation Through Counterfactual Language Models [33.29636213961804]
CausaLM is a framework for producing causal model explanations using counterfactual language representation models.
We show that language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest.
A byproduct of our method is a language representation model that is unaffected by the tested concept.
arXiv Detail & Related papers (2020-05-27T15:06:35Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.