Analyzing the Limits of Self-Supervision in Handling Bias in Language
- URL: http://arxiv.org/abs/2112.08637v3
- Date: Wed, 16 Aug 2023 09:20:12 GMT
- Title: Analyzing the Limits of Self-Supervision in Handling Bias in Language
- Authors: Lisa Bauer, Karthik Gopalakrishnan, Spandana Gella, Yang Liu, Mohit
Bansal, Dilek Hakkani-Tur
- Abstract summary: We evaluate how well language models capture the semantics of four tasks for bias: diagnosis, identification, extraction and rephrasing.
Our analyses indicate that language models are capable of performing these tasks to widely varying degrees across different bias dimensions, such as gender and political affiliation.
- Score: 52.26068057260399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompting inputs with natural language task descriptions has emerged as a
popular mechanism to elicit reasonably accurate outputs from large-scale
generative language models with little to no in-context supervision. This also
helps gain insight into how well language models capture the semantics of a
wide range of downstream tasks purely from self-supervised pre-training on
massive corpora of unlabeled text. Such models have naturally also been exposed
to a lot of undesirable content like racist and sexist language and there is
limited work on awareness of models along these dimensions. In this paper, we
define and comprehensively evaluate how well such language models capture the
semantics of four tasks for bias: diagnosis, identification, extraction and
rephrasing. We define three broad classes of task descriptions for these tasks:
statement, question, and completion, with numerous lexical variants within each
class. We study the efficacy of prompting for each task using these classes and
the null task description across several decoding methods and few-shot
examples. Our analyses indicate that language models are capable of performing
these tasks to widely varying degrees across different bias dimensions, such as
gender and political affiliation. We believe our work is an important step
towards unbiased language models by quantifying the limits of current
self-supervision objectives at accomplishing such sociologically challenging
tasks.
Related papers
- Harnessing the Intrinsic Knowledge of Pretrained Language Models for Challenging Text Classification Settings [5.257719744958367]
This thesis explores three challenging settings in text classification by leveraging the intrinsic knowledge of pretrained language models (PLMs)
We develop models that utilize features based on contextualized word representations from PLMs, achieving performance that rivals or surpasses human accuracy.
Lastly, we tackle the sensitivity of large language models to in-context learning prompts by selecting effective demonstrations.
arXiv Detail & Related papers (2024-08-28T09:07:30Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
We propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers.
Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks.
arXiv Detail & Related papers (2023-05-26T18:06:49Z) - Overcoming Barriers to Skill Injection in Language Modeling: Case Study
in Arithmetic [14.618731441943847]
We develop a novel framework that enables language models to be mathematically proficient while retaining their linguistic prowess.
Specifically, we offer information-theoretic interventions to overcome the catastrophic forgetting of linguistic skills that occurs while injecting non-linguistic skills into language models.
arXiv Detail & Related papers (2022-11-03T18:53:30Z) - Coarse-to-Fine: Hierarchical Multi-task Learning for Natural Language
Understanding [51.31622274823167]
We propose a hierarchical framework with a coarse-to-fine paradigm, with the bottom level shared to all the tasks, the mid-level divided to different groups, and the top-level assigned to each of the tasks.
This allows our model to learn basic language properties from all tasks, boost performance on relevant tasks, and reduce the negative impact from irrelevant tasks.
arXiv Detail & Related papers (2022-08-19T02:46:20Z) - Self-training with Few-shot Rationalization: Teacher Explanations Aid
Student in Few-shot NLU [88.8401599172922]
We develop a framework based on self-training language models with limited task-specific labels and rationales.
We show that the neural model performance can be significantly improved by making it aware of its rationalized predictions.
arXiv Detail & Related papers (2021-09-17T00:36:46Z) - On the Universality of Deep COntextual Language Models [15.218264849664715]
Deep Contextual Language Models (LMs) like ELMO, BERT, and their successors dominate the landscape of Natural Language Processing.
Multilingual versions of such models like XLM-R and mBERT have given promising results in zero-shot cross-lingual transfer.
Due to this initial success, pre-trained models are being used as Universal Language Models'
arXiv Detail & Related papers (2021-09-15T08:00:33Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
Contextualized word representations from pretrained multilingual language models have become the de facto standard for addressing natural language tasks.
For languages rarely or never seen by these models, directly using such models often results in suboptimal representation or use of data.
arXiv Detail & Related papers (2021-06-16T18:13:55Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.