論文の概要: Advancing Molecular Machine (Learned) Representations with Stereoelectronics-Infused Molecular Graphs
- arxiv url: http://arxiv.org/abs/2408.04520v1
- Date: Thu, 8 Aug 2024 15:21:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 15:18:18.467009
- Title: Advancing Molecular Machine (Learned) Representations with Stereoelectronics-Infused Molecular Graphs
- Title(参考訳): 立体エレクトロニクスを融合した分子グラフによる分子機械(学習)表現の促進
- Authors: Daniil A. Boiko, Thiago Reschützegger, Benjamin Sanchez-Lengeling, Samuel M. Blau, Gabe Gomes,
- Abstract要約: 分子グラフに量子化学的に豊富な情報を注入する新しい手法を立体電子効果により導入する。
立体電子相互作用の明示的な付加は分子機械学習モデルの性能を著しく向上させることを示す。
また, 学習された表現は, 従来は難解であったシステムに対して, ファクシブルなステレオエレクトロニクス評価を可能にすることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular representation is a foundational element in our understanding of the physical world. Its importance ranges from the fundamentals of chemical reactions to the design of new therapies and materials. Previous molecular machine learning models have employed strings, fingerprints, global features, and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a novel approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects. We show that the explicit addition of stereoelectronic interactions significantly improves the performance of molecular machine learning models. Furthermore, stereoelectronics-infused representations can be learned and deployed with a tailored double graph neural network workflow, enabling its application to any downstream molecular machine learning task. Finally, we show that the learned representations allow for facile stereoelectronic evaluation of previously intractable systems, such as entire proteins, opening new avenues of molecular design.
- Abstract(参考訳): 分子表現は、物理世界を理解する基本的な要素である。
その重要性は化学反応の基礎から新しい治療法や材料の設計まで様々である。
これまでの分子機械学習モデルでは、文字列、指紋、グローバルな特徴、および本質的に情報スパース表現である単純な分子グラフが採用されていた。
しかし、予測タスクの複雑さが増大するにつれて、分子表現はより高い忠実度情報をエンコードする必要がある。
この研究は、立体電子効果によって量子化学的に豊富な情報を分子グラフに注入する新しいアプローチを導入している。
立体電子相互作用の明示的な付加は分子機械学習モデルの性能を著しく向上させることを示す。
さらに、ステレオエレクトロニクスに注入された表現を学習し、カスタマイズされたダブルグラフニューラルネットワークワークフローでデプロイすることで、下流の分子機械学習タスクに適用することができる。
最後に, 分子設計の新たな道を開くことによって, タンパク質全体など, 従来は難解であったシステムに対して, ファクシブルな立体電子的評価が可能であることを示す。
関連論文リスト
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
本稿では,デコーダのみのグラフトランスフォーマアーキテクチャであるGraphXFormについて述べる。
液液抽出のための2つの溶媒設計課題について評価し,4つの最先端分子設計技術より優れていることを示した。
論文 参考訳(メタデータ) (2024-11-03T19:45:15Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
本稿では,単純な分子システムから得られた知識をより複雑なものに伝達するための新しい手法を提案する。
我々は、高低自由エネルギー状態の分類に焦点をあてる。
以上の結果より, トリアラニンからデカアラニン系への移行学習において, 0.92 の顕著な AUC が得られた。
論文 参考訳(メタデータ) (2022-05-06T16:21:00Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
グラフニューラルネットワーク(GNN)は、薬物の設計と発見の問題を解決するために広く使われている。
分子グラフ生成における表現第一のアプローチを提案する。
我々のアーキテクチャは、医薬品のデータセットの有意義な表現を学習し、目標指向の薬物合成のためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-10-12T18:00:23Z) - Knowledge-aware Contrastive Molecular Graph Learning [5.08771973600915]
自己監督型分子表現学習のためのコントラシブナレッジアウェアGNN(CKGNN)を提案する。
私たちは、コントラスト学習フレームワークの下で知識認識分子エンコーダを介してドメイン知識を明示的にエンコードします。
8つの公開データセットの実験は、平均で6%の絶対的な改善と私たちのモデルの有効性を示しています。
論文 参考訳(メタデータ) (2021-03-24T08:55:08Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLRは、大規模なラベルなしの分子データセットのための自己監視学習フレームワークです。
原子マスキング、結合除去、サブグラフ除去の3つの新しい分子グラフ増強法を提案する。
提案手法は,多くの挑戦的データセットに対して最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-02-19T17:35:18Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。