Hybrid Reinforcement Learning Breaks Sample Size Barriers in Linear MDPs
- URL: http://arxiv.org/abs/2408.04526v1
- Date: Thu, 8 Aug 2024 15:26:18 GMT
- Title: Hybrid Reinforcement Learning Breaks Sample Size Barriers in Linear MDPs
- Authors: Kevin Tan, Wei Fan, Yuting Wei,
- Abstract summary: A crucial question posed by Xie et al. (2022) is whether hybrid RL can improve upon the existing lower bounds established in purely offline and purely online RL.
We develop computationally efficient algorithms for both PAC and regret-minimizing RL with linear function approximation, without single-policy concentrability.
- Score: 15.033410073144939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid Reinforcement Learning (RL), where an agent learns from both an offline dataset and online explorations in an unknown environment, has garnered significant recent interest. A crucial question posed by Xie et al. (2022) is whether hybrid RL can improve upon the existing lower bounds established in purely offline and purely online RL without relying on the single-policy concentrability assumption. While Li et al. (2023) provided an affirmative answer to this question in the tabular PAC RL case, the question remains unsettled for both the regret-minimizing RL case and the non-tabular case. In this work, building upon recent advancements in offline RL and reward-agnostic exploration, we develop computationally efficient algorithms for both PAC and regret-minimizing RL with linear function approximation, without single-policy concentrability. We demonstrate that these algorithms achieve sharper error or regret bounds that are no worse than, and can improve on, the optimal sample complexity in offline RL (the first algorithm, for PAC RL) and online RL (the second algorithm, for regret-minimizing RL) in linear Markov decision processes (MDPs), regardless of the quality of the behavior policy. To our knowledge, this work establishes the tightest theoretical guarantees currently available for hybrid RL in linear MDPs.
Related papers
- On the Statistical Complexity for Offline and Low-Adaptive Reinforcement Learning with Structures [63.36095790552758]
This article reviews the recent advances on the statistical foundation of reinforcement learning (RL) in the offline and low-adaptive settings.
We will start by arguing why offline RL is the appropriate model for almost any real-life ML problems, even if they have nothing to do with the recent AI breakthroughs that use RL.
We will zoom into two fundamental problems of offline RL: offline policy evaluation (OPE) and offline policy learning (OPL)
arXiv Detail & Related papers (2025-01-03T20:27:53Z) - More Benefits of Being Distributional: Second-Order Bounds for
Reinforcement Learning [58.626683114119906]
We show that Distributional Reinforcement Learning (DistRL) can obtain second-order bounds in both online and offline RL.
Our results are the first second-order bounds for low-rank MDPs and for offline RL.
arXiv Detail & Related papers (2024-02-11T13:25:53Z) - Offline Reinforcement Learning for Wireless Network Optimization with
Mixture Datasets [13.22086908661673]
Reinforcement learning (RL) has boosted the adoption of online RL for wireless radio resource management (RRM)
Online RL algorithms require direct interactions with the environment.
offline RL can produce a near-optimal RL policy even when all involved behavior policies are highly suboptimal.
arXiv Detail & Related papers (2023-11-19T21:02:17Z) - Bridging Distributionally Robust Learning and Offline RL: An Approach to
Mitigate Distribution Shift and Partial Data Coverage [32.578787778183546]
offline reinforcement learning (RL) algorithms learn optimal polices using historical (offline) data.
One of the main challenges in offline RL is the distribution shift.
We propose two offline RL algorithms using the distributionally robust learning (DRL) framework.
arXiv Detail & Related papers (2023-10-27T19:19:30Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - A Minimalist Approach to Offline Reinforcement Learning [10.904148149681932]
offline reinforcement learning defines the task of learning from a fixed batch of data.
In this paper we aim to make a deep RL algorithm work while making minimal changes.
We find that we can match the performance of state-of-the-art offline RL algorithms by simply adding a behavior cloning term to the policy update of an online RL algorithm.
arXiv Detail & Related papers (2021-06-12T20:38:59Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline
and Online RL [48.552287941528]
Off-policy reinforcement learning holds the promise of sample-efficient learning of decision-making policies.
In the offline RL setting, standard off-policy RL methods can significantly underperform.
We introduce Expected-Max Q-Learning (EMaQ), which is more closely related to the resulting practical algorithm.
arXiv Detail & Related papers (2020-07-21T21:13:02Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.