Learn To Learn More Precisely
- URL: http://arxiv.org/abs/2408.04590v1
- Date: Thu, 8 Aug 2024 17:01:26 GMT
- Title: Learn To Learn More Precisely
- Authors: Runxi Cheng, Yongxian Wei, Xianglong He, Wanyun Zhu, Songsong Huang, Fei Richard Yu, Fei Ma, Chun Yuan,
- Abstract summary: "Learn to learn more precisely" aims to make the model learn precise target knowledge from data.
We propose a simple and effective meta-learning framework named Meta Self-Distillation(MSD) to maximize the consistency of learned knowledge.
MSD exhibits remarkable performance in few-shot classification tasks in both standard and augmented scenarios.
- Score: 30.825058308218047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta-learning has been extensively applied in the domains of few-shot learning and fast adaptation, achieving remarkable performance. While Meta-learning methods like Model-Agnostic Meta-Learning (MAML) and its variants provide a good set of initial parameters for the model, the model still tends to learn shortcut features, which leads to poor generalization. In this paper, we propose the formal conception of "learn to learn more precisely", which aims to make the model learn precise target knowledge from data and reduce the effect of noisy knowledge, such as background and noise. To achieve this target, we proposed a simple and effective meta-learning framework named Meta Self-Distillation(MSD) to maximize the consistency of learned knowledge, enhancing the models' ability to learn precise target knowledge. In the inner loop, MSD uses different augmented views of the same support data to update the model respectively. Then in the outer loop, MSD utilizes the same query data to optimize the consistency of learned knowledge, enhancing the model's ability to learn more precisely. Our experiment demonstrates that MSD exhibits remarkable performance in few-shot classification tasks in both standard and augmented scenarios, effectively boosting the accuracy and consistency of knowledge learned by the model.
Related papers
- Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models [51.20499954955646]
Large language models (LLMs) acquire vast amounts of knowledge from extensive text corpora during the pretraining phase.
In later stages such as fine-tuning and inference, the model may encounter knowledge not covered in the initial training.
We propose a two-stage fine-tuning strategy to improve the model's overall test accuracy and knowledge retention.
arXiv Detail & Related papers (2024-10-08T08:35:16Z) - Learning to Unlearn for Robust Machine Unlearning [6.488418950340473]
We introduce a novel Learning-to-Unlearn (LTU) framework to optimize the unlearning process.
LTU includes a meta-optimization scheme that facilitates models to effectively preserve generalizable knowledge.
We also introduce a Gradient Harmonization strategy to align the optimization trajectories for remembering and forgetting.
arXiv Detail & Related papers (2024-07-15T07:36:00Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
We propose Self-improving Momentum Target (SiMT) to improve the performance of a meta-learner.
SiMT generates the target model by adapting from the temporal ensemble of the meta-learner.
We show that SiMT brings a significant performance gain when combined with a wide range of meta-learning methods.
arXiv Detail & Related papers (2022-10-11T06:45:15Z) - On Fast Adversarial Robustness Adaptation in Model-Agnostic
Meta-Learning [100.14809391594109]
Model-agnostic meta-learning (MAML) has emerged as one of the most successful meta-learning techniques in few-shot learning.
Despite the generalization power of the meta-model, it remains elusive that how adversarial robustness can be maintained by MAML in few-shot learning.
We propose a general but easily-optimized robustness-regularized meta-learning framework, which allows the use of unlabeled data augmentation, fast adversarial attack generation, and computationally-light fine-tuning.
arXiv Detail & Related papers (2021-02-20T22:03:04Z) - Meta-learning the Learning Trends Shared Across Tasks [123.10294801296926]
Gradient-based meta-learning algorithms excel at quick adaptation to new tasks with limited data.
Existing meta-learning approaches only depend on the current task information during the adaptation.
We propose a 'Path-aware' model-agnostic meta-learning approach.
arXiv Detail & Related papers (2020-10-19T08:06:47Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
We develop a better understanding of the underlying mechanics of meta-learning and the difference between models trained using meta-learning and models trained classically.
We develop a regularizer which boosts the performance of standard training routines for few-shot classification.
arXiv Detail & Related papers (2020-02-17T03:18:45Z) - Towards explainable meta-learning [5.802346990263708]
Meta-learning aims at discovering how different machine learning algorithms perform on a wide range of predictive tasks.
State of the art approaches are focused on searching for the best meta-model but do not explain how these different aspects contribute to its performance.
We propose techniques developed for eXplainable Artificial Intelligence (XAI) to examine and extract knowledge from black-box surrogate models.
arXiv Detail & Related papers (2020-02-11T09:42:29Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
We aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning.
By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning.
This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning.
arXiv Detail & Related papers (2020-02-03T06:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.