論文の概要: Arctic-TILT. Business Document Understanding at Sub-Billion Scale
- arxiv url: http://arxiv.org/abs/2408.04632v1
- Date: Thu, 8 Aug 2024 17:59:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 14:48:21.017838
- Title: Arctic-TILT. Business Document Understanding at Sub-Billion Scale
- Title(参考訳): サブビリオンスケールでの企業文書の理解
- Authors: Łukasz Borchmann, Michał Pietruszka, Wojciech Jaśkowski, Dawid Jurkiewicz, Piotr Halama, Paweł Józiak, Łukasz Garncarek, Paweł Liskowski, Karolina Szyndler, Andrzej Gretkowski, Julita Ołtusek, Gabriela Nowakowska, Artur Zawłocki, Łukasz Duhr, Paweł Dyda, Michał Turski,
- Abstract要約: これらのユースケースで1000$times=そのサイズに匹敵する精度を実現したArctic-TILTを導入する。
単一の24GB GPU上で微調整およびデプロイが可能で、最大400kのトークンでVisually Rich Documentsを処理しながら、運用コストを削減できる。
このモデルは、7つの異なる理解ドキュメントベンチマークの最先端結果を確立し、信頼性の高い信頼性スコアと迅速な推論を提供する。
- 参考スコア(独自算出の注目度): 1.2286461468814107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vast portion of workloads employing LLMs involves answering questions grounded on PDF or scan content. We introduce the Arctic-TILT achieving accuracy on par with models 1000$\times$ its size on these use cases. It can be fine-tuned and deployed on a single 24GB GPU, lowering operational costs while processing Visually Rich Documents with up to 400k tokens. The model establishes state-of-the-art results on seven diverse Document Understanding benchmarks, as well as provides reliable confidence scores and quick inference, which are essential for processing files in large-scale or time-sensitive enterprise environments.
- Abstract(参考訳): LLMを使用するワークロードの大部分は、PDFに基づく質問に答えたり、コンテンツをスキャンする作業である。
これらのユースケースで1000$\times=そのサイズに匹敵する精度を実現したArctic-TILTを導入する。
単一の24GB GPU上で微調整およびデプロイが可能で、最大400kのトークンでVisually Rich Documentsを処理しながら、運用コストを削減できる。
このモデルは、7つの多様なドキュメント理解ベンチマークの最先端結果を確立し、大規模または時間に敏感なエンタープライズ環境でファイルを処理するのに不可欠な信頼性スコアと迅速な推論を提供する。
関連論文リスト
- M-Longdoc: A Benchmark For Multimodal Super-Long Document Understanding And A Retrieval-Aware Tuning Framework [75.95430061891828]
851サンプルのベンチマークであるM-LongDocと、大規模マルチモーダルモデルの性能を評価するための自動フレームワークを紹介する。
効率的なマルチモーダル文書読解のための検索対応チューニング手法を提案する。
論文 参考訳(メタデータ) (2024-11-09T13:30:38Z) - LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding [103.69014172427026]
大規模マルチモーダルモデル(LMM)は、最近、テキストに富む画像理解において大きな進歩を見せている。
長文書理解を支援するLMMの能力を拡張したLoRA-Contextualizing Adaptation of Large Multimodal Model (LoCAL) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-02T02:09:01Z) - MMDocBench: Benchmarking Large Vision-Language Models for Fine-Grained Visual Document Understanding [66.23502779435053]
LVLM(Large Vision-Language Models)は多くの視覚言語タスクにおいて顕著な性能を発揮している。
既存のベンチマークには、他のデータと混合された詳細な評価サンプルが限られているか、あるいは自然画像のオブジェクトレベルの評価に限られている。
自然画像の補足に多粒度および多モード情報を用いた文書画像を提案する。
論文 参考訳(メタデータ) (2024-10-25T16:00:55Z) - CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation [51.2289822267563]
合成データセットを生成するCRAFT(Corpus Retrieval and Augmentation for Fine-Tuning)を提案する。
我々は、大規模な公開ウェブクローラコーパスと類似性に基づく文書検索を用いて、他の関連する人文文書を検索する。
我々は,CRAFTが4つのタスクに対して,大規模タスク固有のトレーニングデータセットを効率的に生成できることを実証した。
論文 参考訳(メタデータ) (2024-09-03T17:54:40Z) - MMLongBench-Doc: Benchmarking Long-context Document Understanding with Visualizations [105.10376440302076]
MMLongBench-Doc は 1,062 のエキスパート注釈付き質問を含む長文マルチモーダルベンチマークである。
130の長いPDFフォーマットの文書の上に構築されており、平均49.4ページと20,971のテキストトークンがある。
14個のLVLMの実験により、長いコンテキストのDUが現在のモデルに大きく挑戦することを示した。
論文 参考訳(メタデータ) (2024-07-01T17:59:26Z) - $\infty$Bench: Extending Long Context Evaluation Beyond 100K Tokens [64.08660301017302]
現在、この長期コンテキスト機能を評価するための標準ベンチマークが欠落している。
$infty$Benchは、平均データ長が100Kを超える最初のベンチマークである。
その結果,100K以上のコンテキストを効果的に処理するには,既存の長期的LLMの大幅な進歩が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-02-21T11:30:29Z) - Drilling Down into the Discourse Structure with LLMs for Long Document
Question Answering [5.022057415488129]
本稿では,文書に共通する談話構造を利用した一組の手法を提案する。
複雑なマルチホップ質問応答において,我々のアプローチをテキスト自己認識推論エージェントと組み合わせて,最高のゼロショット性能を実現する方法を示す。
論文 参考訳(メタデータ) (2023-11-22T18:22:56Z) - Multimodal Document Analytics for Banking Process Automation [4.541582055558865]
本論文は,銀行業務における文書処理における多モデルモデルの有効性と効率に関する実証的証拠を提示する。
日々の業務でこの可能性を解き放つための実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2023-07-21T18:29:04Z) - HADES: Homologous Automated Document Exploration and Summarization [3.3509104620016092]
HADESは大量の文書を扱う専門家の仕事の合理化を目的としている。
このツールは、トピックモデリング、要約、トピック毎の最も重要な単語の解析を用いてPDF文書の処理から始まる多段階パイプラインを使用する。
論文 参考訳(メタデータ) (2023-02-25T15:16:10Z) - The Law of Large Documents: Understanding the Structure of Legal
Contracts Using Visual Cues [0.7425558351422133]
コンピュータビジョン手法を用いて得られた視覚的手がかりが文書理解タスクの精度に与える影響を計測する。
構造メタデータに基づく文書のセグメンテーション手法は,4つの文書理解タスクにおいて,既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-16T21:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。