論文の概要: LiDAR-Event Stereo Fusion with Hallucinations
- arxiv url: http://arxiv.org/abs/2408.04633v1
- Date: Thu, 8 Aug 2024 17:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 14:48:21.014455
- Title: LiDAR-Event Stereo Fusion with Hallucinations
- Title(参考訳): 幻覚を伴うLiDARイベントステレオフュージョン
- Authors: Luca Bartolomei, Matteo Poggi, Andrea Conti, Stefano Mattoccia,
- Abstract要約: イベントステレオマッチングはニューロモルフィックカメラから深度を推定する新しい手法である。
ステレオ・イベント・カメラと定周波アクティブ・センサの統合を提案する。
このような奥行きのヒントは幻覚、すなわち架空の出来事を挿入することで使われる。
- 参考スコア(独自算出の注目度): 30.58274733545517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event stereo matching is an emerging technique to estimate depth from neuromorphic cameras; however, events are unlikely to trigger in the absence of motion or the presence of large, untextured regions, making the correspondence problem extremely challenging. Purposely, we propose integrating a stereo event camera with a fixed-frequency active sensor -- e.g., a LiDAR -- collecting sparse depth measurements, overcoming the aforementioned limitations. Such depth hints are used by hallucinating -- i.e., inserting fictitious events -- the stacks or raw input streams, compensating for the lack of information in the absence of brightness changes. Our techniques are general, can be adapted to any structured representation to stack events and outperform state-of-the-art fusion methods applied to event-based stereo.
- Abstract(参考訳): イベントステレオマッチングは、ニューロモルフィックカメラから深度を推定する新たな手法である。しかし、動きの欠如や大きな非テクスチャ領域の存在によってイベントが引き起こされる可能性は低いため、対応問題は極めて困難である。
目的,ステレオ・イベント・カメラと固定周波数アクティブ・センサ(例えばLiDAR)を統合することを提案する。
このような奥行きヒントは幻覚 -- すなわち架空のイベントを挿入する -- スタックや生の入力ストリーム -- によって使用され、明るさの変化がない場合の情報不足を補う。
提案手法は汎用的であり,任意の構造化表現をスタックイベントに適用し,イベントベースステレオに適用した最先端の融合手法より優れる。
関連論文リスト
- Adaptive Stereo Depth Estimation with Multi-Spectral Images Across All Lighting Conditions [58.88917836512819]
本稿では,立体深度推定を取り入れた新しいフレームワークを提案し,正確な幾何学的制約を強制する。
照明の劣化がステレオマッチングに与える影響を軽減するために,劣化マスキングを導入する。
提案手法は,Multi-Spectral Stereo(MS2)データセット上でのSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-11-06T03:30:46Z) - EV-MGDispNet: Motion-Guided Event-Based Stereo Disparity Estimation Network with Left-Right Consistency [4.849111230195686]
イベントカメラはロボットビジョンの分野に革命をもたらす可能性がある。
イベントベースの新しいステレオ異性度推定法であるEV-MGDispNetを提案する。
本手法は, 平均絶対誤差(MAE)と根平均二乗誤差(RMSE)の指標で, 現在知られている最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-08-10T06:13:37Z) - LED: A Large-scale Real-world Paired Dataset for Event Camera Denoising [19.51468512911655]
イベントカメラは、ノイズ干渉を受けやすい場合に動的シーン情報をキャプチャする点で大きな利点がある。
我々は,高解像度(1200*680)イベントストリームで18K秒の3Kシーケンスを含む,新しいペア化された実世界のイベントデノゲーションデータセット(LED)を構築した。
そこで本研究では,GTを生音から分離して生成する手法として,均質な二重事象を用いた新しい効果的なデノナイジングフレームワーク(DED)を提案する。
論文 参考訳(メタデータ) (2024-05-30T06:02:35Z) - Self-supervised Event-based Monocular Depth Estimation using Cross-modal
Consistency [18.288912105820167]
EMoDepth という自己教師型イベントベース単眼深度推定フレームワークを提案する。
EMoDepthは、ピクセル座標内のイベントに整合した強度フレームからのクロスモーダル一貫性を使用して、トレーニングプロセスを制約する。
推論では、単分子深度予測にはイベントのみを使用する。
論文 参考訳(メタデータ) (2024-01-14T07:16:52Z) - Rethink Cross-Modal Fusion in Weakly-Supervised Audio-Visual Video
Parsing [58.9467115916639]
本研究では, 核融合における非相関なクロスモーダルコンテキストを低減するために, メッセンジャー誘導型中間核融合変換器を提案する。
メッセンジャーは、完全なクロスモーダルコンテキストをコンパクトな表現に凝縮し、有用なクロスモーダル情報のみを保持する。
そこで我々は,無関係な音声情報の視覚事象予測への影響を抑えるために,クロスオーディオ予測整合性を提案する。
論文 参考訳(メタデータ) (2023-11-14T13:27:03Z) - Learning Parallax for Stereo Event-based Motion Deblurring [8.201943408103995]
既存のアプローチは、インテンシティ・イメージとイベントの間の完全なピクセルワイド・アライメントに依存している。
我々は,Stereoイベントと強度カメラ(St-EDNet)を併用したイベントベース動作のNetwork of Event-based motionを提案する。
我々はSTEIC(Stereo Event and Intensity Cameras)を用いた新しいデータセットを構築し、現実世界のイベント、強度画像、密度の異なるマップを含む。
論文 参考訳(メタデータ) (2023-09-18T06:51:41Z) - Deformable Neural Radiance Fields using RGB and Event Cameras [65.40527279809474]
我々は,RGBとイベントカメラを用いた変形可能なニューラル放射場をモデル化する新しい手法を開発した。
提案手法は,イベントの非同期ストリームと疎RGBフレームを用いる。
現実的にレンダリングされたグラフィックと実世界のデータセットの両方で実施された実験は、提案手法の有益性を実証している。
論文 参考訳(メタデータ) (2023-09-15T14:19:36Z) - Video Frame Interpolation with Stereo Event and Intensity Camera [40.07341828127157]
高品質な中間フレームを生成するための新しいステレオイベントベースVFIネットワーク(SE-VFI-Net)を提案する。
我々は,正確な光学的流れと不均一性推定を実現するために,融合した特徴を利用する。
提案するSEVFI-Netは最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2023-07-17T04:02:00Z) - MEFNet: Multi-scale Event Fusion Network for Motion Deblurring [62.60878284671317]
従来のフレームベースのカメラは、長時間露光のために必然的に動きがぼやけている。
バイオインスパイアされたカメラの一種として、イベントカメラは、高時間分解能で非同期な方法で強度変化を記録する。
本稿では,イベントベースの画像劣化問題を再考し,これをエンドツーエンドの2段階画像復元ネットワークに展開する。
論文 参考訳(メタデータ) (2021-11-30T23:18:35Z) - Event Guided Depth Sensing [50.997474285910734]
バイオインスパイアされたイベントカメラ駆動深度推定アルゴリズムを提案する。
提案手法では,イベントカメラが検出したシーン活動に応じて,関心領域を高密度に照明する。
シミュレーションされた自律運転シーケンスと実際の屋内環境におけるアプローチの実現可能性を示す。
論文 参考訳(メタデータ) (2021-10-20T11:41:11Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。