論文の概要: AI for operational methane emitter monitoring from space
- arxiv url: http://arxiv.org/abs/2408.04745v1
- Date: Thu, 8 Aug 2024 20:06:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 17:08:34.681865
- Title: AI for operational methane emitter monitoring from space
- Title(参考訳): 宇宙からのメタンエミッタモニタリングのためのAI
- Authors: Anna Vaughan, Gonzalo Mateo-Garcia, Itziar Irakulis-Loitxate, Marc Watine, Pablo Fernandez-Poblaciones, Richard E. Turner, James Requeima, Javier Gorroño, Cynthia Randles, Manfredi Caltagirone, Claudio Cifarelli,
- Abstract要約: メタン排出量の削減は、短期的に地球温暖化を抑える最速の方法だ。
我々は、Sentinel-2とLandsat衛星画像のための自動AI駆動メタンエミッタ監視システムMARS-S2Lを提案する。
このシステムの運用は6ヶ月にわたって行われ、22カ国で457件の準リアルタイム検出が行われた。
- 参考スコア(独自算出の注目度): 14.274401014063018
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mitigating methane emissions is the fastest way to stop global warming in the short-term and buy humanity time to decarbonise. Despite the demonstrated ability of remote sensing instruments to detect methane plumes, no system has been available to routinely monitor and act on these events. We present MARS-S2L, an automated AI-driven methane emitter monitoring system for Sentinel-2 and Landsat satellite imagery deployed operationally at the United Nations Environment Programme's International Methane Emissions Observatory. We compile a global dataset of thousands of super-emission events for training and evaluation, demonstrating that MARS-S2L can skillfully monitor emissions in a diverse range of regions globally, providing a 216% improvement in mean average precision over a current state-of-the-art detection method. Running this system operationally for six months has yielded 457 near-real-time detections in 22 different countries of which 62 have already been used to provide formal notifications to governments and stakeholders.
- Abstract(参考訳): メタン排出量を減らすことは、短期的に地球温暖化を抑え、脱炭する人類の時間を買うための最速の方法だ。
リモートセンシング装置がメタンプラムを検知する能力が実証されているにもかかわらず、これらの事象を定期的に監視し、行動するシステムはない。
我々は,国連環境プログラムの国際メタン排出観測所で運用されているSentinel-2およびLandsat衛星画像のためのAI駆動型自動メタン放出装置であるMARS-S2Lを提案する。
我々は、トレーニングと評価のために、何千ものスーパーエミッションイベントのグローバルデータセットをコンパイルし、MARS-S2Lが世界中の様々な領域の排出を巧みに監視できることを示し、現在の最先端検出方法よりも216%の精度で平均精度を向上できることを実証した。
このシステムの運用は6ヶ月にわたって行われ、22カ国で457件の準リアルタイム検出が実施され、62件が政府や利害関係者への正式な通知に使用されている。
関連論文リスト
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - GeoFormer: A Vision and Sequence Transformer-based Approach for
Greenhouse Gas Monitoring [2.1647301294759624]
本研究では,NO2濃度を予測するために,視覚変換モジュールと高効率な時系列変換モジュールを組み合わせたコンパクトモデルを提案する。
我々は、地上監視局のSentinel-5P画像を用いて構築したデータセットを用いて、提案モデルを用いて表面レベルのNO2測定を予測する。
論文 参考訳(メタデータ) (2024-02-11T11:20:29Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
メタンは最も強力な温室効果ガスの1つである。
現在のメタン放出モニタリング技術は、近似的な放出要因や自己報告に依存している。
深層学習法は、Sentinel-2衛星マルチスペクトルデータにおけるメタン漏れの自動検出に利用することができる。
論文 参考訳(メタデータ) (2023-08-21T19:36:50Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - MethaneMapper: Spectral Absorption aware Hyperspectral Transformer for
Methane Detection [13.247385727508155]
メタンは地球規模の気候変動に大きく貢献している。
本稿では, 放射を検出・定量化するために, 端から端までのスペクトル吸収波長を考慮したトランスネットワークMethaneMapperを提案する。
MethaneMapperは検出時に0.63mAPを達成し、現在の技術と比べてモデルサイズ(5倍)を縮小する。
論文 参考訳(メタデータ) (2023-04-05T22:15:18Z) - Supervised segmentation of NO2 plumes from individual ships using
TROPOMI satellite data [0.07874708385247353]
海運業界は、ヒトの健康と環境の両方に有害な物質であるtextNO_text2$という、最も強力な人為的な排出源の1つだ。
現在船の排ガスモニタリングに使われているすべての方法は費用がかかり、船に近づかなければならない。
有望なアプローチはリモートセンシングの応用である。
論文 参考訳(メタデータ) (2022-03-14T10:56:22Z) - Climate Change & Computer Audition: A Call to Action and Overview on
Audio Intelligence to Help Save the Planet [98.97255654573662]
この研究は、オーディオインテリジェンスが気候に関わる課題を克服するために貢献できる領域の概要を提供する。
我々は、地球、水、空気、火、エーテルの5つの要素に従って、潜在的なコンピュータオーディションの応用を分類する。
論文 参考訳(メタデータ) (2022-03-10T13:32:31Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - OGNet: Towards a Global Oil and Gas Infrastructure Database using Deep
Learning on Remotely Sensed Imagery [8.471461072749472]
地球が現在経験している温暖化の少なくとも4分の1は、人為的なメタンの放出によるものである。
本研究では,石油やガスのインフラを自動的に検出するために,高解像度の高解像度空中画像を利用するディープラーニングアルゴリズムを開発した。
我々は,OGNetが,石油・ガスインフラの4つの標準公開データセットに存在しない多くの施設を検出していることを示す。
論文 参考訳(メタデータ) (2020-11-14T06:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。