Scalable learning of potentials to predict time-dependent Hartree-Fock dynamics
- URL: http://arxiv.org/abs/2408.04765v2
- Date: Wed, 04 Dec 2024 01:18:02 GMT
- Title: Scalable learning of potentials to predict time-dependent Hartree-Fock dynamics
- Authors: Harish S. Bhat, Prachi Gupta, Christine M. Isborn,
- Abstract summary: We develop, train, and test three models of the TDHF inter-electronic potential.
Across seven different molecular systems, we find that accounting for the deeper eight-fold symmetry leads to the best-performing model.
- Score: 0.8192907805418581
- License:
- Abstract: We propose a framework to learn the time-dependent Hartree-Fock (TDHF) inter-electronic potential of a molecule from its electron density dynamics. Though the entire TDHF Hamiltonian, including the inter-electronic potential, can be computed from first principles, we use this problem as a testbed to develop strategies that can be applied to learn a priori unknown terms that arise in other methods/approaches to quantum dynamics, e.g., emerging problems such as learning exchange-correlation potentials for time-dependent density functional theory. We develop, train, and test three models of the TDHF inter-electronic potential, each parameterized by a four-index tensor of size up to $60 \times 60 \times 60 \times 60$. Two of the models preserve Hermitian symmetry, while one model preserves an eight-fold permutation symmetry that implies Hermitian symmetry. Across seven different molecular systems, we find that accounting for the deeper eight-fold symmetry leads to the best-performing model across three metrics: training efficiency, test set predictive power, and direct comparison of true and learned inter-electronic potentials. All three models, when trained on ensembles of field-free trajectories, generate accurate electron dynamics predictions even in a field-on regime that lies outside the training set. To enable our models to scale to large molecular systems, we derive expressions for Jacobian-vector products that enable iterative, matrix-free training.
Related papers
- Enhanced coarsening of charge density waves induced by electron correlation: Machine-learning enabled large-scale dynamical simulations [4.94903410489486]
phase ordering kinetics of emergent orders in correlated electron systems is a fundamental topic in non-equilibrium physics.
We leverage modern machine learning (ML) methods to achieve a linear-scaling algorithm for simulating the coarsening of charge density waves (CDWs)
Our study provides fresh insights into the role of electron correlations in non-equilibrium dynamics and underscores the promise of ML force-field approaches.
arXiv Detail & Related papers (2024-12-30T16:44:11Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Fast and accurate nonadiabatic molecular dynamics enabled through variational interpolation of correlated electron wavefunctions [0.0]
We develop a small training set of many-body wavefunctions through chemical space at mean-field cost.
We show that analytic multi-state forces and nonadiabatic couplings from the model enable application to nonadiabatic molecular dynamics.
This culminates in application to the nonadiabatic molecular dynamics of a photoexcited 28-atom hydrogen chain.
arXiv Detail & Related papers (2024-03-18T21:44:46Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Dynamic Learning of Correlation Potentials for a Time-Dependent
Kohn-Sham System [2.6763498831034034]
We develop methods to learn the correlation potential for a time-dependent Kohn-Sham (TDKS) system in one spatial dimension.
We start from a low-dimensional two-electron system for which we can numerically solve the time-dependent Schr"odinger equation.
Applying adjoints, we develop efficient methods to compute gradients and thereby learn models of the correlation potential.
arXiv Detail & Related papers (2021-12-14T00:01:19Z) - SE(3)-equivariant prediction of molecular wavefunctions and electronic
densities [4.2572103161049055]
We introduce general SE(3)-equivariant operations and building blocks for constructing deep learning architectures for geometric point cloud data.
Our model reduces prediction errors by up to two orders of magnitude compared to the previous state-of-the-art.
We demonstrate the potential of our approach in a transfer learning application, where a model trained on low accuracy reference wavefunctions implicitly learns to correct for electronic many-body interactions.
arXiv Detail & Related papers (2021-06-04T08:57:46Z) - SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
Interatomic Potentials [0.17590081165362778]
NequIP is a SE(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations.
The method achieves state-of-the-art accuracy on a challenging set of diverse molecules and materials while exhibiting remarkable data efficiency.
arXiv Detail & Related papers (2021-01-08T18:49:10Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.