Enhanced coarsening of charge density waves induced by electron correlation: Machine-learning enabled large-scale dynamical simulations
- URL: http://arxiv.org/abs/2412.21072v1
- Date: Mon, 30 Dec 2024 16:44:11 GMT
- Title: Enhanced coarsening of charge density waves induced by electron correlation: Machine-learning enabled large-scale dynamical simulations
- Authors: Yang Yang, Chen Cheng, Yunhao Fan, Gia-Wei Chern,
- Abstract summary: phase ordering kinetics of emergent orders in correlated electron systems is a fundamental topic in non-equilibrium physics.
We leverage modern machine learning (ML) methods to achieve a linear-scaling algorithm for simulating the coarsening of charge density waves (CDWs)
Our study provides fresh insights into the role of electron correlations in non-equilibrium dynamics and underscores the promise of ML force-field approaches.
- Score: 4.94903410489486
- License:
- Abstract: The phase ordering kinetics of emergent orders in correlated electron systems is a fundamental topic in non-equilibrium physics, yet it remains largely unexplored. The intricate interplay between quasiparticles and emergent order-parameter fields could lead to unusual coarsening dynamics that is beyond the standard theories. However, accurate treatment of both quasiparticles and collective degrees of freedom is a multi-scale challenge in dynamical simulations of correlated electrons. Here we leverage modern machine learning (ML) methods to achieve a linear-scaling algorithm for simulating the coarsening of charge density waves (CDWs), one of the fundamental symmetry breaking phases in functional electron materials. We demonstrate our approach on the square-lattice Hubbard-Holstein model and uncover an intriguing enhancement of CDW coarsening which is related to the screening of on-site potential by electron-electron interactions. Our study provides fresh insights into the role of electron correlations in non-equilibrium dynamics and underscores the promise of ML force-field approaches for advancing multi-scale dynamical modeling of correlated electron systems.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Kinetics of orbital ordering in cooperative Jahn-Teller models: Machine-learning enabled large-scale simulations [7.540467064488348]
We present a scalable machine learning (ML) force-field model for the adiabatic dynamics of Jahn-Teller (JT) systems.
Large scale dynamical simulations of the JT model shed light on the orbital ordering dynamics in colossal magnetoresistance manganites.
arXiv Detail & Related papers (2024-05-23T16:44:29Z) - Trapped-Ion Quantum Simulation of Electron Transfer Models with Tunable Dissipation [1.159879739037684]
We experimentally simulate a paradigmatic model of molecular electron transfer using a multispecies trapped-ion crystal.
We observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics.
arXiv Detail & Related papers (2024-05-16T18:03:17Z) - Interpolating many-body wave functions for accelerated molecular dynamics on the near-exact electronic surface [0.0]
We develop a scheme for the correlated many-electron state through the space of atomic configurations.
We demonstrate provable convergence to near-exact potential energy surfaces for subsequent dynamics.
We combine this with modern electronic structure approaches to systematically resolve molecular dynamics trajectories.
arXiv Detail & Related papers (2024-02-16T22:03:37Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Ab initio electron-lattice downfolding: potential energy landscapes,
anharmonicity, and molecular dynamics in charge density wave materials [0.0]
Computational challenges arise especially for large systems, long time scales, in nonequilibrium, or in systems with strong correlations.
We show how downfolding approaches facilitate complexity reduction on the electronic side and thereby boost the simulation of electronic properties and nuclear motion.
arXiv Detail & Related papers (2023-03-13T16:41:37Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Machine learning dynamics of phase separation in correlated electron
magnets [0.0]
We demonstrate machine-learning enabled large-scale dynamical simulations of electronic phase separation in double-exchange system.
Our work paves the way for large-scale dynamical simulations of correlated electron systems using machine-learning models.
arXiv Detail & Related papers (2020-06-07T17:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.