論文の概要: MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure
- arxiv url: http://arxiv.org/abs/2408.04845v1
- Date: Fri, 9 Aug 2024 03:42:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 16:48:31.515715
- Title: MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure
- Title(参考訳): MDS-GNN:不完全な特徴と構造を持つグラフ上の相互デュアルストリームグラフニューラルネットワーク
- Authors: Peng Yuan, Peng Tang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データから表現を分析し学習するための強力なツールとして登場した。
GNNの卓越した性能にとって重要な前提条件は、完全なグラフ情報の提供である。
本研究では,特徴と構造間の相互利益学習を実装した相互二重ストリームグラフニューラルネットワーク(MDS-GNN)を提案する。
- 参考スコア(独自算出の注目度): 8.00268216176428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing and learning representations from graph-structured data. A crucial prerequisite for the outstanding performance of GNNs is the availability of complete graph information, i.e., node features and graph structure, which is frequently unmet in real-world scenarios since graphs are often incomplete due to various uncontrollable factors. Existing approaches only focus on dealing with either incomplete features or incomplete structure, which leads to performance loss inevitably. To address this issue, this study proposes a mutual dual-stream graph neural network (MDS-GNN), which implements a mutual benefit learning between features and structure. Its main ideas are as follows: a) reconstructing the missing node features based on the initial incomplete graph structure; b) generating an augmented global graph based on the reconstructed node features, and propagating the incomplete node features on this global graph; and c) utilizing contrastive learning to make the dual-stream process mutually benefit from each other. Extensive experiments on six real-world datasets demonstrate the effectiveness of our proposed MDS-GNN on incomplete graphs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データから表現を分析し学習するための強力なツールとして登場した。
GNNの卓越した性能にとって重要な前提条件は、完全なグラフ情報、すなわちノードの特徴とグラフ構造が利用できることである。
既存のアプローチでは、不完全な機能や不完全な構造を扱うことのみに集中しています。
この問題に対処するために,特徴と構造間の相互利益学習を実装した相互二重ストリームグラフニューラルネットワーク(MDS-GNN)を提案する。
主な考え方は以下の通りである。
a) 初期不完全グラフ構造に基づく欠落ノードの特徴の再構築
b) 再建されたノードの特徴に基づいて拡張されたグローバルグラフを生成し、このグローバルグラフ上の不完全ノードの特徴を伝播すること。
c) 対照的な学習を活用して、双方向のプロセスが相互に利益をもたらすこと。
6つの実世界のデータセットに対する大規模な実験は、提案したMDS-GNNが不完全グラフに与える影響を実証している。
関連論文リスト
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
グラフニューラルネットワーク(GNN)は,グラフ表現学習において最先端のパフォーマンスを達成した。
我々は新しいアプローチ、すなわち集合構造知識強化グラフニューラルネットワーク(CoS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:50:00Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - T2-GNN: Graph Neural Networks for Graphs with Incomplete Features and
Structure via Teacher-Student Distillation [65.43245616105052]
グラフニューラルネットワーク(GNN)は,様々な解析タスクをグラフデータ上で処理する手法として普及している。
本稿では,教師による蒸留に基づく一般GNNフレームワークを提案し,不完全グラフ上でのGNNの性能向上を図る。
論文 参考訳(メタデータ) (2022-12-24T13:49:44Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
近年,グラフニューラルネットワーク(GNN)が注目されている。
近年の研究では、GNNはグラフの複雑な基盤構造に弱いことが示されている。
半教師付き分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T06:17:11Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Incomplete Graph Representation and Learning via Partial Graph Neural
Networks [7.227805463462352]
多くのアプリケーションでは、グラフノードの属性が部分的に未知/欠落している不完全な形式でグラフがやってくる可能性がある。
既存のGNNは、属性不完全なグラフデータを直接処理できない完全なグラフに基づいて設計されている。
本研究では,属性不完全グラフ表現と学習のための部分グラフニューラルネットワーク(PaGNN)を新たに開発した。
論文 参考訳(メタデータ) (2020-03-23T08:29:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。