論文の概要: Relevance Filtering for Embedding-based Retrieval
- arxiv url: http://arxiv.org/abs/2408.04887v1
- Date: Fri, 09 Aug 2024 06:21:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 17:51:35.739250
- Title: Relevance Filtering for Embedding-based Retrieval
- Title(参考訳): 埋め込み型検索のための関連フィルタリング
- Authors: Nicholas Rossi, Juexin Lin, Feng Liu, Zhen Yang, Tony Lee, Alessandro Magnani, Ciya Liao,
- Abstract要約: 埋め込み型検索では、ANN(Approximate Nearest Neighbor)検索により、大規模データセットから類似したアイテムを効率的に検索することができる。
本稿では,この課題に対処するために,埋め込み型検索のための新しい関連フィルタリングコンポーネント("Cosine Adapter" と呼ぶ)を提案する。
少ないリコールの損失を犠牲にして、回収したセットの精度を大幅に向上することが可能です。
- 参考スコア(独自算出の注目度): 46.851594313019895
- License:
- Abstract: In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.
- Abstract(参考訳): 埋め込み型検索では、ANN(Approximate Nearest Neighbor)検索により、大規模データセットから類似したアイテムを効率的に検索することができる。
関連項目のリコールを最大化することは、通常、検索システムの目標であるが、低い精度で検索エクスペリエンスが低下する可能性がある。
キーワードマッチングによって検索された集合のサイズを本質的に制限する語彙検索とは異なり、ANN検索による密度検索は自然なカットオフを持たない。
さらに、埋め込みベクトルのコサイン類似度スコアは、しばしばコントラストやランキングの損失によって最適化され、解釈が困難になる。
したがって、トップKやコサイン類似性のカットオフに頼ることは、無関係の結果を効果的にフィルタリングするには不十分であることが多い。
この問題は製品検索において顕著であり、関連する製品の数は少ないことが多い。
本稿では,この課題に対処するために,埋め込み型検索のための新しい関連フィルタリングコンポーネント("Cosine Adapter" と呼ぶ)を提案する。
提案手法は,クエリ依存マッピング関数を用いて,コサイン類似度スコアを解釈可能なスコアにマッピングする。
次に、マッピングされたスコアにグローバルしきい値を適用して、無関係な結果をフィルタリングする。
少ないリコールの損失を犠牲にして、回収したセットの精度を大幅に向上することが可能です。
提案手法の有効性は,MS MARCOデータセットとWalmart内部製品検索データの両方を用いた実験により実証された。
さらに、WalmartサイトでのオンラインA/Bテストは、実際のeコマース設定における我々のアプローチの実践的価値を検証する。
関連論文リスト
- pEBR: A Probabilistic Approach to Embedding Based Retrieval [4.8338111302871525]
埋め込み検索は、クエリとアイテムの両方の共有セマンティック表現空間を学習することを目的としている。
現在の産業実践では、検索システムは典型的には、異なるクエリに対して一定数のアイテムを検索する。
論文 参考訳(メタデータ) (2024-10-25T07:14:12Z) - Efficient Retrieval with Learned Similarities [2.729516456192901]
最先端の検索アルゴリズムは、学習された類似点に移行した。
筆者らは,Mixture-of-Logits (MoL) が普遍近似であり,学習された類似度関数を全て表現できることを示した。
MoLはレコメンデーション検索タスクに新たな最先端結果を設定し、学習した類似性を持つ近似トップk検索は、最大2桁のレイテンシでベースラインを上回ります。
論文 参考訳(メタデータ) (2024-07-22T08:19:34Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
コントラディション検索(Contradiction Search)とは、クエリの内容に明示的に異を唱える文書を識別し、抽出することである。
類似性探索やクロスエンコーダモデルといった既存の手法には、大きな制限がある。
文間の微妙で矛盾したニュアンスを保存するために特別に訓練された文埋め込みを利用するSparseCLを導入する。
論文 参考訳(メタデータ) (2024-06-15T21:57:03Z) - Adaptive Retrieval and Scalable Indexing for k-NN Search with Cross-Encoders [77.84801537608651]
クエリ-イムペアを共同で符号化することで類似性を計算するクロスエンコーダ(CE)モデルは、クエリ-イム関連性を推定する埋め込みベースモデル(デュアルエンコーダ)よりも優れている。
本稿では,潜時クエリとアイテム埋め込みを効率的に計算してCEスコアを近似し,CE類似度を近似したk-NN探索を行うスパース行列分解法を提案する。
論文 参考訳(メタデータ) (2024-05-06T17:14:34Z) - Group Testing for Accurate and Efficient Range-Based Near Neighbor Search for Plagiarism Detection [2.3814052021083354]
本研究は, 近接探索問題に対する適応型群検定フレームワークを提案する。
本研究では,データベース内の各項目を問合せ点の隣人あるいは非隣人として,余剰距離閾値に基づいて効率よくマークする。
本研究では,ソフトマックスに基づく特徴量を用いて,完全探索よりも10倍以上の高速化を実現し,精度を損なわないことを示す。
論文 参考訳(メタデータ) (2023-11-05T06:12:03Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
LADR (Lexically-Accelerated Dense Retrieval) は, 既存の高密度検索モデルの効率を向上する, 簡便な手法である。
LADRは、標準ベンチマークでの徹底的な検索と同等の精度とリコールの両方を一貫して達成する。
論文 参考訳(メタデータ) (2023-07-31T15:44:26Z) - IRLI: Iterative Re-partitioning for Learning to Index [104.72641345738425]
分散環境でのロードバランスとスケーラビリティを維持しながら、高い精度を得る方法とのトレードオフが必要だ。
クエリ項目関連データから直接バケットを学習することで、アイテムを反復的に分割するIRLIと呼ばれる新しいアプローチを提案する。
我々は,irliが極めて自然な仮定の下で高い確率で正しい項目を検索し,優れた負荷分散を実現することを数学的に示す。
論文 参考訳(メタデータ) (2021-03-17T23:13:25Z) - Surprise: Result List Truncation via Extreme Value Theory [92.5817701697342]
そこで本研究では,問合せ時における可逆的・校正的関連度スコアを,ランク付けされたスコアに留まらず,統計的に生成する手法を提案する。
本稿では、画像、テキスト、IRデータセット間での結果リストのトランケーションタスクにおいて、その効果を実証する。
論文 参考訳(メタデータ) (2020-10-19T19:15:50Z) - LSF-Join: Locality Sensitive Filtering for Distributed All-Pairs Set
Similarity Under Skew [58.21885402826496]
全ペアセットの類似性は、大規模で高次元のデータセットであっても広く使われているデータマイニングタスクである。
我々は,全対集合の類似性を近似するために,新しい分散アルゴリズム LSF-Join を提案する。
LSF-Joinは、小さな類似度閾値やスキュー入力セットであっても、最も近いペアを効率的に見つける。
論文 参考訳(メタデータ) (2020-03-06T00:06:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。