Clustering-friendly Representation Learning for Enhancing Salient Features
- URL: http://arxiv.org/abs/2408.04891v1
- Date: Fri, 9 Aug 2024 06:27:19 GMT
- Title: Clustering-friendly Representation Learning for Enhancing Salient Features
- Authors: Toshiyuki Oshima, Kentaro Takagi, Kouta Nakata,
- Abstract summary: In this paper, we focus on unsupervised image clustering as the downstream task.
We extend a clustering-friendly contrastive learning method and incorporate a contrastive analysis approach.
For all datasets, our method achieves higher clustering scores compared with conventional contrastive analysis and deep clustering methods.
- Score: 2.184775414778289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, representation learning with contrastive learning algorithms has been successfully applied to challenging unlabeled datasets. However, these methods are unable to distinguish important features from unimportant ones under simply unsupervised settings, and definitions of importance vary according to the type of downstream task or analysis goal, such as the identification of objects or backgrounds. In this paper, we focus on unsupervised image clustering as the downstream task and propose a representation learning method that enhances features critical to the clustering task. We extend a clustering-friendly contrastive learning method and incorporate a contrastive analysis approach, which utilizes a reference dataset to separate important features from unimportant ones, into the design of loss functions. Conducting an experimental evaluation of image clustering for three datasets with characteristic backgrounds, we show that for all datasets, our method achieves higher clustering scores compared with conventional contrastive analysis and deep clustering methods.
Related papers
- Discriminative Anchor Learning for Efficient Multi-view Clustering [59.11406089896875]
We propose discriminative anchor learning for multi-view clustering (DALMC)
We learn discriminative view-specific feature representations according to the original dataset.
We build anchors from different views based on these representations, which increase the quality of the shared anchor graph.
arXiv Detail & Related papers (2024-09-25T13:11:17Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Seeking the Truth Beyond the Data. An Unsupervised Machine Learning
Approach [0.0]
Clustering is an unsupervised machine learning methodology where unlabeled elements/objects are grouped together.
This article provides a deep description of the most widely used clustering methodologies.
It emphasizes the comparison of these algorithms' clustering efficiency based on 3 datasets.
arXiv Detail & Related papers (2022-07-14T14:22:36Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
We tackle the problem of learning visual representations from unlabeled scene-centric data.
We propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning.
arXiv Detail & Related papers (2022-05-30T17:50:59Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Cluster Analysis with Deep Embeddings and Contrastive Learning [0.0]
This work proposes a novel framework for performing image clustering from deep embeddings.
Our approach jointly learns representations and predicts cluster centers in an end-to-end manner.
Our framework performs on par with widely accepted clustering methods and outperforms the state-of-the-art contrastive learning method on the CIFAR-10 dataset.
arXiv Detail & Related papers (2021-09-26T22:18:15Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Unsupervised Image Classification for Deep Representation Learning [42.09716669386924]
We propose an unsupervised image classification framework without using embedding clustering.
Experiments on ImageNet dataset have been conducted to prove the effectiveness of our method.
arXiv Detail & Related papers (2020-06-20T02:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.