Cluster Analysis with Deep Embeddings and Contrastive Learning
- URL: http://arxiv.org/abs/2109.12714v1
- Date: Sun, 26 Sep 2021 22:18:15 GMT
- Title: Cluster Analysis with Deep Embeddings and Contrastive Learning
- Authors: Ramakrishnan Sundareswaran, Jansel Herrera-Gerena, John Just, Ali
Janessari
- Abstract summary: This work proposes a novel framework for performing image clustering from deep embeddings.
Our approach jointly learns representations and predicts cluster centers in an end-to-end manner.
Our framework performs on par with widely accepted clustering methods and outperforms the state-of-the-art contrastive learning method on the CIFAR-10 dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unsupervised disentangled representation learning is a long-standing problem
in computer vision. This work proposes a novel framework for performing image
clustering from deep embeddings by combining instance-level contrastive
learning with a deep embedding based cluster center predictor. Our approach
jointly learns representations and predicts cluster centers in an end-to-end
manner. This is accomplished via a three-pronged approach that combines a
clustering loss, an instance-wise contrastive loss, and an anchor loss. Our
fundamental intuition is that using an ensemble loss that incorporates
instance-level features and a clustering procedure focusing on semantic
similarity reinforces learning better representations in the latent space. We
observe that our method performs exceptionally well on popular vision datasets
when evaluated using standard clustering metrics such as Normalized Mutual
Information (NMI), in addition to producing geometrically well-separated
cluster embeddings as defined by the Euclidean distance. Our framework performs
on par with widely accepted clustering methods and outperforms the
state-of-the-art contrastive learning method on the CIFAR-10 dataset with an
NMI score of 0.772, a 7-8% improvement on the strong baseline.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images [43.152314090830174]
We introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering.
Our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module.
arXiv Detail & Related papers (2024-04-10T15:51:46Z) - Deep Temporal Contrastive Clustering [21.660509622172274]
This paper presents a deep temporal contrastive clustering approach.
It incorporates the contrastive learning paradigm into the deep time series clustering research.
Experiments on a variety of time series datasets demonstrate the superiority of our approach over the state-of-the-art.
arXiv Detail & Related papers (2022-12-29T16:43:34Z) - Exploring Non-Contrastive Representation Learning for Deep Clustering [23.546602131801205]
Non-contrastive representation learning for deep clustering, termed NCC, is based on BYOL, a representative method without negative examples.
NCC forms an embedding space where all clusters are well-separated and within-cluster examples are compact.
Experimental results on several clustering benchmark datasets including ImageNet-1K demonstrate that NCC outperforms the state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2021-11-23T12:21:53Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Clustering-friendly Representation Learning via Instance Discrimination
and Feature Decorrelation [0.0]
We propose a clustering-friendly representation learning method using instance discrimination and feature decorrelation.
In evaluations of image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy of 81.5% and 95.4%, respectively.
arXiv Detail & Related papers (2021-05-31T22:59:31Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
We introduce a novel variant called Semantic Contrastive Learning (SCL)
It explores the characteristics of both conventional contrastive learning and deep clustering.
It can amplify the strengths of contrastive learning and deep clustering in a unified approach.
arXiv Detail & Related papers (2021-03-03T20:20:48Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.