Unleashing Artificial Cognition: Integrating Multiple AI Systems
- URL: http://arxiv.org/abs/2408.04910v5
- Date: Thu, 17 Oct 2024 22:54:23 GMT
- Title: Unleashing Artificial Cognition: Integrating Multiple AI Systems
- Authors: Muntasir Adnan, Buddhi Gamage, Zhiwei Xu, Damith Herath, Carlos C. N. Kuhn,
- Abstract summary: We present an innovative fusion of language models and query analysis techniques to unlock cognition in artificial intelligence.
The introduced open-source AI system seamlessly integrates a Chess engine with a language model, enabling it to predict moves and provide strategic explanations.
Our system holds promise for diverse applications, from medical diagnostics to financial forecasting.
- Score: 2.402818676870194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we present an innovative fusion of language models and query analysis techniques to unlock cognition in artificial intelligence. The introduced open-source AI system seamlessly integrates a Chess engine with a language model, enabling it to predict moves and provide strategic explanations. Leveraging a vector database to achieve retrievable answer generation, our AI system elucidates its decision-making process, bridging the gap between raw computation and human-like understanding. Our choice of Chess as the demonstration environment underscores the versatility of our approach. Beyond Chess, our system holds promise for diverse applications, from medical diagnostics to financial forecasting. Our AI system is available at https://github.com/TheOpenSI/CoSMIC.git
Related papers
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Generative AI Systems: A Systems-based Perspective on Generative AI [12.400966570867322]
Large Language Models (LLMs) have revolutionized AI systems by enabling communication with machines using natural language.
Recent developments in Generative AI (GenAI) have shown great promise in using LLMs as multimodal systems.
This paper aims to explore and state new research directions in Generative AI Systems.
arXiv Detail & Related papers (2024-06-25T12:51:47Z) - Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
An artificial general intelligence (AGI) has been an elusive goal in artificial intelligence (AI) research for some time.
An AGI would have the capability, like a human, to be exposed to a new problem domain, learn about it and then use reasoning processes to make decisions.
This paper presents a small step towards producing an AGI.
arXiv Detail & Related papers (2024-06-17T07:21:44Z) - Cognition is All You Need -- The Next Layer of AI Above Large Language
Models [0.0]
We present Cognitive AI, a framework for neurosymbolic cognition outside of large language models.
We propose that Cognitive AI is a necessary precursor for the evolution of the forms of AI, such as AGI, and specifically claim that AGI cannot be achieved by probabilistic approaches on their own.
We conclude with a discussion of the implications for large language models, adoption cycles in AI, and commercial Cognitive AI development.
arXiv Detail & Related papers (2024-03-04T16:11:57Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
We define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules.
We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL) system.
arXiv Detail & Related papers (2022-05-01T11:01:28Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z) - Designer-User Communication for XAI: An epistemological approach to
discuss XAI design [4.169915659794568]
We take the Signifying Message as our conceptual tool to structure and discuss XAI scenarios.
We experiment with its use for the discussion of a healthcare AI-System.
arXiv Detail & Related papers (2021-05-17T13:18:57Z) - Explainable Artificial Intelligence Approaches: A Survey [0.22940141855172028]
Lack of explainability of a decision from an Artificial Intelligence based "black box" system/model is a key stumbling block for adopting AI in high stakes applications.
We demonstrate popular Explainable Artificial Intelligence (XAI) methods with a mutual case study/task.
We analyze for competitive advantages from multiple perspectives.
We recommend paths towards responsible or human-centered AI using XAI as a medium.
arXiv Detail & Related papers (2021-01-23T06:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.