Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies
- URL: http://arxiv.org/abs/2406.11272v1
- Date: Mon, 17 Jun 2024 07:21:44 GMT
- Title: Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies
- Authors: Jeremy Straub,
- Abstract summary: An artificial general intelligence (AGI) has been an elusive goal in artificial intelligence (AI) research for some time.
An AGI would have the capability, like a human, to be exposed to a new problem domain, learn about it and then use reasoning processes to make decisions.
This paper presents a small step towards producing an AGI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Producing an artificial general intelligence (AGI) has been an elusive goal in artificial intelligence (AI) research for some time. An AGI would have the capability, like a human, to be exposed to a new problem domain, learn about it and then use reasoning processes to make decisions. While AI techniques have been used across a wide variety of problem domains, an AGI would require an AI that could reason beyond its programming and training. This paper presents a small step towards producing an AGI. It describes a mechanism for an AI to learn about and develop reasoning pathways to make decisions in an a priori unknown domain. It combines a classical AI technique, the expert system, with a its modern adaptation - the gradient descent trained expert system (GDTES) - and utilizes generative artificial intelligence (GAI) to create a network and training data set for this system. These can be created from available sources or may draw upon knowledge incorporated in a GAI's own pre-trained model. The learning process in GDTES is used to optimize the AI's decision-making. While this approach does not meet the standards that many have defined for an AGI, it provides a somewhat similar capability, albeit one which requires a learning process before use.
Related papers
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - End-User Development for Artificial Intelligence: A Systematic
Literature Review [2.347942013388615]
End-User Development (EUD) can allow people to create, customize, or adapt AI-based systems to their own needs.
This paper presents a literature review that aims to shed the light on the current landscape of EUD for AI systems.
arXiv Detail & Related papers (2023-04-14T09:57:36Z) - When Brain-inspired AI Meets AGI [40.96159978312796]
We provide a comprehensive overview of brain-inspired AI from the perspective of Artificial General Intelligence.
We begin with the current progress in brain-inspired AI and its extensive connection with AGI.
We then cover the important characteristics for both human intelligence and AGI.
arXiv Detail & Related papers (2023-03-28T12:46:38Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
We develop and experimentally validate the first fully self-reprogramming AI system.
Applying AI-based computer code generation to AI itself, we implement an algorithm with the ability to continuously modify and rewrite its own neural network source code.
arXiv Detail & Related papers (2022-04-30T05:44:34Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
This chapter provides an overview of the different Artificial Intelligence (AI) systems that are being used in digital tools for Mathematics Education (ME)
It is aimed at researchers in AI and Machine Learning (ML), for whom we shed some light on the specific technologies that are being used in educational applications.
arXiv Detail & Related papers (2021-07-13T12:09:10Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
This article presents a new methodology, AI from concrete to abstract (AIcon2abs)
The main strategy adopted by is to promote a demystification of artificial intelligence.
The simplicity of the WiSARD weightless artificial neural network model enables easy visualization and understanding of training and classification tasks.
arXiv Detail & Related papers (2020-06-07T01:14:06Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.