論文の概要: PTrajM: Efficient and Semantic-rich Trajectory Learning with Pretrained Trajectory-Mamba
- arxiv url: http://arxiv.org/abs/2408.04916v1
- Date: Fri, 9 Aug 2024 07:48:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 16:18:44.218918
- Title: PTrajM: Efficient and Semantic-rich Trajectory Learning with Pretrained Trajectory-Mamba
- Title(参考訳): PTrajM:事前学習した軌道マンバを用いた効率的・意味豊かな軌道学習
- Authors: Yan Lin, Yichen Liu, Zeyu Zhou, Haomin Wen, Erwen Zheng, Shengnan Guo, Youfang Lin, Huaiyu Wan,
- Abstract要約: 車両軌道は様々な現実世界の用途に重要な移動情報を提供する。
移動や旅行目的を含む豊かな意味情報を効率的に抽出する軌道学習手法を開発することが不可欠である。
本稿では,効率的な意味豊かな車両軌道学習法であるPTrajMを提案する。
- 参考スコア(独自算出の注目度): 22.622613591771152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle trajectories provide crucial movement information for various real-world applications. To better utilize vehicle trajectories, it is essential to develop a trajectory learning approach that can effectively and efficiently extract rich semantic information, including movement behavior and travel purposes, to support accurate downstream applications. However, creating such an approach presents two significant challenges. First, movement behavior are inherently spatio-temporally continuous, making them difficult to extract efficiently from irregular and discrete trajectory points. Second, travel purposes are related to the functionalities of areas and road segments traversed by vehicles. These functionalities are not available from the raw spatio-temporal trajectory features and are hard to extract directly from complex textual features associated with these areas and road segments. To address these challenges, we propose PTrajM, a novel method capable of efficient and semantic-rich vehicle trajectory learning. To support efficient modeling of movement behavior, we introduce Trajectory-Mamba as the learnable model of PTrajM, which effectively extracts continuous movement behavior while being more computationally efficient than existing structures. To facilitate efficient extraction of travel purposes, we propose a travel purpose-aware pre-training procedure, which enables PTrajM to discern the travel purposes of trajectories without additional computational resources during its embedding process. Extensive experiments on two real-world datasets and comparisons with several state-of-the-art trajectory learning methods demonstrate the effectiveness of PTrajM. Code is available at https://anonymous.4open.science/r/PTrajM-C973.
- Abstract(参考訳): 車両軌道は様々な現実世界の用途に重要な移動情報を提供する。
車両軌道をよりよく活用するためには、移動行動や旅行目的を含む豊かな意味情報を効果的かつ効率的に抽出し、正確な下流アプリケーションを支援するための軌道学習アプローチを開発することが不可欠である。
しかし、そのようなアプローチを作るには2つの大きな課題がある。
第一に、運動行動は本質的に時空間連続であり、不規則かつ離散的な軌道点から効率的に抽出することが困難である。
第二に、旅行目的は、車両が横断する地域と道路セグメントの機能に関係している。
これらの機能は、生の時空間軌道の特徴から利用することができず、これらの領域や道路セグメントに関連する複雑なテキストの特徴から直接抽出することは困難である。
これらの課題に対処するため,PTrajMを提案する。
本稿では,PTrajMの学習可能なモデルとしてTrajectory-Mambaを導入する。
旅行目的の効率的な抽出を容易にするため,PTrajMは,その埋め込みプロセス中に余分な計算資源を必要とせずに,旅路の走行目的を識別できる旅行目的対応事前学習手法を提案する。
2つの実世界のデータセットに対する大規模な実験と、いくつかの最先端の軌道学習手法との比較により、PTrajMの有効性が示された。
コードはhttps://anonymous.4open.science/r/PTrajM-C973で公開されている。
関連論文リスト
- KOI: Accelerating Online Imitation Learning via Hybrid Key-state Guidance [51.09834120088799]
キーステートガイド付きオンライン模倣(KOI)学習手法について紹介する。
我々は視覚言語モデルを用いて、専門家の軌跡から意味的キー状態を抽出し、「何をすべきか」の目的を示す。
セマンティックキー状態間の間隔内では、動作キー状態の捕捉に光流が使用され、「どうするか」のメカニズムが理解される。
論文 参考訳(メタデータ) (2024-08-06T02:53:55Z) - TrajCogn: Leveraging LLMs for Cognizing Movement Patterns and Travel Purposes from Trajectories [24.44686757572976]
S時間軌道は様々なデータマイニング作業において重要である。
異なるタスクを高精度に行う多目的軌跡学習法を開発することが重要である。
モデルキャパシティの制限と、トラジェクトリデータセットの品質とスケールのため、これは難しい。
論文 参考訳(メタデータ) (2024-05-21T02:33:17Z) - MTDT: A Multi-Task Deep Learning Digital Twin [8.600701437207725]
我々は,多面的かつ正確な交差点交通流シミュレーションのソリューションとして,MTDT(Multi-Task Deep Learning Digital Twin)を導入した。
MTDTは,移動車線毎のループ検出波形時系列の精度,きめ細かな推定を可能にする。
複数のタスクにまたがって学習プロセスを統合することで、MTDTはオーバーフィッティングの削減、効率の向上、有効性の向上を示す。
論文 参考訳(メタデータ) (2024-05-02T00:34:10Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics [30.9735101687326]
Trajectory Representation Learning (TRL) は空間時間データ分析と管理のための強力なツールである。
既存のTRLの作業は通常、トラジェクトリを通常のシーケンスデータとして扱うが、時間的規則性や旅行意味論といった重要な時空間特性は、完全には利用されない。
本稿では,TemporAl規則と旅行意味論,すなわちSTARTを用いた自己教師付き軌道表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-17T13:14:47Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
オフラインデータセットを使用してファクタードトランジションモデルを学習するトレーニング目標を提案する。
我々の理論的分析は、学習された潜在行動空間が下流模倣学習のサンプル効率を高めることを示唆している。
実際に潜伏行動空間を学習するために、エネルギーベースの遷移モデルを学ぶアルゴリズムTRAIL(Transition-Reparametrized Actions for Imitation Learning)を提案する。
論文 参考訳(メタデータ) (2021-10-27T21:05:00Z) - PlayVirtual: Augmenting Cycle-Consistent Virtual Trajectories for
Reinforcement Learning [84.30765628008207]
本稿では,RL特徴表現学習におけるデータ効率を向上させるために,サイクル一貫性のある仮想トラジェクトリを付加するPlayVirtualという新しい手法を提案する。
本手法は,両ベンチマークにおいて,最先端の手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2021-06-08T07:37:37Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
軌道抽出と予測のための新しいラベルなしアルゴリズムAutoTrajectoryを提案する。
動画中の移動物体をよりよく捉えるために,ダイナミックポイントを導入する。
ビデオ内の歩行者などの移動物体を表すインスタンスポイントに動的ポイントを集約する。
論文 参考訳(メタデータ) (2020-07-11T08:43:34Z) - DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis [10.335486459171992]
我々は,Deep Embedded TrajEctor ClusTering Network (DETECT)と呼ばれる,移動行動クラスタリングのための教師なしニューラルネットワークを提案する。
DETECTは3つの部分で機能する: まず、重要な部分を要約し、地理的局所性から派生した文脈で拡張することで軌道を変換する。
第2部では、潜在行動空間におけるトラジェクトリの強力な表現を学び、これによりクラスタリング関数(例えば$k$means)を適用できる。
論文 参考訳(メタデータ) (2020-03-03T06:09:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。