UAV-Enhanced Combination to Application: Comprehensive Analysis and Benchmarking of a Human Detection Dataset for Disaster Scenarios
- URL: http://arxiv.org/abs/2408.04922v2
- Date: Fri, 23 Aug 2024 18:01:25 GMT
- Title: UAV-Enhanced Combination to Application: Comprehensive Analysis and Benchmarking of a Human Detection Dataset for Disaster Scenarios
- Authors: Ragib Amin Nihal, Benjamin Yen, Katsutoshi Itoyama, Kazuhiro Nakadai,
- Abstract summary: Unmanned aerial vehicles (UAVs) have revolutionized search and rescue (SAR) operations.
The lack of specialized human detection datasets for training machine learning models poses a significant challenge.
This paper introduces the Combination to Application (C2A) dataset, synthesized by overlaying human poses onto UAV-captured disaster scenes.
- Score: 3.759682200711633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned aerial vehicles (UAVs) have revolutionized search and rescue (SAR) operations, but the lack of specialized human detection datasets for training machine learning models poses a significant challenge.To address this gap, this paper introduces the Combination to Application (C2A) dataset, synthesized by overlaying human poses onto UAV-captured disaster scenes. Through extensive experimentation with state-of-the-art detection models, we demonstrate that models fine-tuned on the C2A dataset exhibit substantial performance improvements compared to those pre-trained on generic aerial datasets. Furthermore, we highlight the importance of combining the C2A dataset with general human datasets to achieve optimal performance and generalization across various scenarios. This points out the crucial need for a tailored dataset to enhance the effectiveness of SAR operations. Our contributions also include developing dataset creation pipeline and integrating diverse human poses and disaster scenes information to assess the severity of disaster scenarios. Our findings advocate for future developments, to ensure that SAR operations benefit from the most realistic and effective AI-assisted interventions possible.
Related papers
- UAV (Unmanned Aerial Vehicles): Diverse Applications of UAV Datasets in Segmentation, Classification, Detection, and Tracking [0.0]
Unmanned Aerial Vehicles (UAVs) have revolutionized the process of gathering and analyzing data in diverse research domains.
UAV datasets consist of various types of data, such as satellite imagery, images captured by drones, and videos.
These datasets play a crucial role in disaster damage assessment, aerial surveillance, object recognition, and tracking.
arXiv Detail & Related papers (2024-09-05T04:47:36Z) - Deep Learning Framework for History Matching CO2 Storage with 4D Seismic and Monitoring Well Data [0.0]
Geological carbon storage entails the injection of megatonnes of supercritical CO2 into subsurface formations.
This paper introduces a history matching strategy that enables the calibration of formation properties based on early-time observations.
arXiv Detail & Related papers (2024-08-02T21:14:13Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Human-Centric Aware UAV Trajectory Planning in Search and Rescue
Missions Employing Multi-Objective Reinforcement Learning with AHP and
Similarity-Based Experience Replay [0.0]
This paper explores the effect of human-centric factor in UAV trajectory planning for Search and Rescue missions.
Through a comprehensive survey, we investigate the impact of gender cues and anthropomorphism in UAV design on public acceptance and trust.
arXiv Detail & Related papers (2024-02-28T17:10:22Z) - Scaling Data Generation in Vision-and-Language Navigation [116.95534559103788]
We propose an effective paradigm for generating large-scale data for learning.
We apply 1200+ photo-realistic environments from HM3D and Gibson datasets and synthesizes 4.9 million instruction trajectory pairs.
Thanks to our large-scale dataset, the performance of an existing agent can be pushed up (+11% absolute with regard to previous SoTA) to a significantly new best of 80% single-run success rate on the R2R test split by simple imitation learning.
arXiv Detail & Related papers (2023-07-28T16:03:28Z) - Consecutive Pretraining: A Knowledge Transfer Learning Strategy with
Relevant Unlabeled Data for Remote Sensing Domain [25.84756140221655]
ConSecutive PreTraining (CSPT) is proposed based on the idea of not stopping pretraining in natural language processing (NLP)
The proposed CSPT also can release the huge potential of unlabeled data for task-aware model training.
The results show that by utilizing the proposed CSPT for task-aware model training, almost all downstream tasks in RSD can outperform the previous method of supervised pretraining-then-fine-tuning.
arXiv Detail & Related papers (2022-07-08T12:32:09Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
The paper introduces a new dataset to assess the performance of machine learning algorithms in the prediction of the seriousness of injury in a traffic accident.
The dataset is created by aggregating publicly available datasets from the UK Department for Transport.
arXiv Detail & Related papers (2022-05-20T21:15:26Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
We propose two techniques for producing high-quality naturalistic synthetic occluded faces.
We empirically show the effectiveness and robustness of both methods, even for unseen occlusions.
We present two high-resolution real-world occluded face datasets with fine-grained annotations, RealOcc and RealOcc-Wild.
arXiv Detail & Related papers (2022-05-12T17:03:57Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Novel Human-Object Interaction Detection via Adversarial Domain
Generalization [103.55143362926388]
We study the problem of novel human-object interaction (HOI) detection, aiming at improving the generalization ability of the model to unseen scenarios.
The challenge mainly stems from the large compositional space of objects and predicates, which leads to the lack of sufficient training data for all the object-predicate combinations.
We propose a unified framework of adversarial domain generalization to learn object-invariant features for predicate prediction.
arXiv Detail & Related papers (2020-05-22T22:02:56Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.