Model Debiasing by Learnable Data Augmentation
- URL: http://arxiv.org/abs/2408.04955v1
- Date: Fri, 9 Aug 2024 09:19:59 GMT
- Title: Model Debiasing by Learnable Data Augmentation
- Authors: Pietro Morerio, Ruggero Ragonesi, Vittorio Murino,
- Abstract summary: This paper proposes a novel 2-stage learning pipeline featuring a data augmentation strategy able to regularize the training.
Experiments on synthetic and realistic biased datasets show state-of-the-art classification accuracy, outperforming competing methods.
- Score: 19.625915578646758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks are well known for efficiently fitting training data, yet experiencing poor generalization capabilities whenever some kind of bias dominates over the actual task labels, resulting in models learning "shortcuts". In essence, such models are often prone to learn spurious correlations between data and labels. In this work, we tackle the problem of learning from biased data in the very realistic unsupervised scenario, i.e., when the bias is unknown. This is a much harder task as compared to the supervised case, where auxiliary, bias-related annotations, can be exploited in the learning process. This paper proposes a novel 2-stage learning pipeline featuring a data augmentation strategy able to regularize the training. First, biased/unbiased samples are identified by training over-biased models. Second, such subdivision (typically noisy) is exploited within a data augmentation framework, properly combining the original samples while learning mixing parameters, which has a regularization effect. Experiments on synthetic and realistic biased datasets show state-of-the-art classification accuracy, outperforming competing methods, ultimately proving robust performance on both biased and unbiased examples. Notably, being our training method totally agnostic to the level of bias, it also positively affects performance for any, even apparently unbiased, dataset, thus improving the model generalization regardless of the level of bias (or its absence) in the data.
Related papers
- CosFairNet:A Parameter-Space based Approach for Bias Free Learning [1.9116784879310025]
Deep neural networks trained on biased data often inadvertently learn unintended inference rules.
We introduce a novel approach to address bias directly in the model's parameter space, preventing its propagation across layers.
We show enhanced classification accuracy and debiasing effectiveness across various synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-19T13:06:40Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
We propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model.
Our proposed strategy improves the bias identification ability of the auxiliary model.
arXiv Detail & Related papers (2023-12-06T16:15:00Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
Chamber [17.034228910493056]
This paper presents experimental analyses revealing that the existing biased models overfit to bias-conflicting samples in the training data.
We propose a straightforward and effective method called Echoes, which trains a biased model and a target model with a different strategy.
Our approach achieves superior debiasing results compared to the existing baselines on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-06T13:13:18Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
Deep neural networks are known for their inability to learn robust representations when biases exist in the dataset.
We propose a fully unsupervised debiasing framework, consisting of three steps.
We employ state-of-the-art supervised debiasing techniques to obtain an unbiased model.
arXiv Detail & Related papers (2022-04-26T10:51:50Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Learning Debiased Models with Dynamic Gradient Alignment and
Bias-conflicting Sample Mining [39.00256193731365]
Deep neural networks notoriously suffer from dataset biases which are detrimental to model robustness, generalization and fairness.
We propose a two-stage debiasing scheme to combat against the intractable unknown biases.
arXiv Detail & Related papers (2021-11-25T14:50:10Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.