論文の概要: PriPHiT: Privacy-Preserving Hierarchical Training of Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2408.05092v2
- Date: Mon, 16 Dec 2024 10:10:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:52:27.366893
- Title: PriPHiT: Privacy-Preserving Hierarchical Training of Deep Neural Networks
- Title(参考訳): PriPHiT: ディープニューラルネットワークのプライバシ保護階層的トレーニング
- Authors: Yamin Sepehri, Pedram Pad, Pascal Frossard, L. Andrea Dunbar,
- Abstract要約: エッジデバイスとクラウドサーバの両方でディープラーニングモデルのトレーニングフェーズを実行する方法を提案する。
提案するプライバシ保存方法は,敵の早期出口を利用してエッジのセンシティブなコンテンツを抑制し,タスク関連情報をクラウドに送信する。
- 参考スコア(独自算出の注目度): 44.0097014096626
- License:
- Abstract: The training phase of deep neural networks requires substantial resources and as such is often performed on cloud servers. However, this raises privacy concerns when the training dataset contains sensitive content, e.g., facial or medical images. In this work, we propose a method to perform the training phase of a deep learning model on both an edge device and a cloud server that prevents sensitive content being transmitted to the cloud while retaining the desired information. The proposed privacy-preserving method uses adversarial early exits to suppress the sensitive content at the edge and transmits the task-relevant information to the cloud. This approach incorporates noise addition during the training phase to provide a differential privacy guarantee. We extensively test our method on different facial and medical datasets with diverse attributes using various deep learning architectures, showcasing its outstanding performance. We also demonstrate the effectiveness of privacy preservation through successful defenses against different white-box, deep and GAN-based reconstruction attacks. This approach is designed for resource-constrained edge devices, ensuring minimal memory usage and computational overhead.
- Abstract(参考訳): ディープニューラルネットワークのトレーニングフェーズには、かなりのリソースが必要で、クラウドサーバ上で実行されることが多い。
しかし、トレーニングデータセットが、例えば顔や医療画像などのセンシティブなコンテンツを含んでいる場合、プライバシー上の懸念が高まる。
本研究では、エッジデバイスとクラウドサーバの両方でディープラーニングモデルのトレーニングフェーズを実行する方法を提案する。
提案するプライバシ保存方法は,敵の早期出口を利用してエッジのセンシティブなコンテンツを抑制し,タスク関連情報をクラウドに送信する。
このアプローチでは、トレーニングフェーズ中にノイズの追加を取り入れて、差分プライバシー保証を提供する。
本手法は,様々な深層学習アーキテクチャを用いて,多様な属性を持つ顔・医用データセット上で広範囲に検証し,その優れた性能を示す。
また、異なるホワイトボックス、ディープ、GANベースの再構築攻撃に対する防御を成功させ、プライバシ保護の有効性を実証する。
このアプローチはリソース制約のあるエッジデバイス向けに設計されており、メモリ使用量と計算オーバーヘッドを最小限に抑える。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Investigating Privacy Attacks in the Gray-Box Setting to Enhance Collaborative Learning Schemes [7.651569149118461]
我々は、攻撃者がモデルに限られたアクセスしかできないグレーボックス設定でプライバシ攻撃を研究する。
SmartNNCryptは、同型暗号化を調整して、より高いプライバシーリスクを示すモデルの部分を保護するフレームワークです。
論文 参考訳(メタデータ) (2024-09-25T18:49:21Z) - Privacy-Preserving Deep Learning Using Deformable Operators for Secure Task Learning [14.187385349716518]
既存のプライバシー保護方法は、画像暗号化や知覚変換アプローチに依存している。
安全なタスク学習に変形可能な演算子の集合を用いる新しいプライバシ保存フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-08T19:46:20Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - Hierarchical Training of Deep Neural Networks Using Early Exiting [42.186536611404165]
深層ニューラルネットワークは、ビジョンタスクに最先端の精度を提供するが、トレーニングにはかなりのリソースを必要とする。
ディープニューラルネットワークは、データを取得するエッジデバイスから遠く離れたクラウドサーバでトレーニングされる。
本研究では,エッジワーカとクラウドワーカの分割アーキテクチャにおける早期出口を用いた,深層ニューラルネットワークの階層的学習手法を提案する。
論文 参考訳(メタデータ) (2023-03-04T11:30:16Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
本稿では,匿名化中間表現を用いたタスク非依存型プライバシ参照データクラウドソーシングフレームワークTIPRDCを提案する。
このフレームワークの目的は、中間表現からプライバシー情報を隠蔽できる機能抽出器を学習することであり、データコレクターの生データに埋め込まれた元の情報を最大限に保持し、未知の学習タスクを達成することである。
論文 参考訳(メタデータ) (2020-05-23T06:21:26Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。