Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones
- URL: http://arxiv.org/abs/2408.05156v1
- Date: Fri, 9 Aug 2024 16:27:51 GMT
- Title: Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones
- Authors: Sidi Yaya Arnaud Yarga, Sean U. N. Wood,
- Abstract summary: Keywords Spotting task involves continuous audio stream monitoring to detect predefined words.
Neuromorphic devices effectively address this energy challenge.
We propose a direct microphone-to-SNN connection.
System achieved an accuracy of 91.54% on the Google Speech Command dataset.
- Score: 0.25782420501870285
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Keyword Spotting (KWS) task involves continuous audio stream monitoring to detect predefined words, requiring low energy devices for continuous processing. Neuromorphic devices effectively address this energy challenge. However, the general neuromorphic KWS pipeline, from microphone to Spiking Neural Network (SNN), entails multiple processing stages. Leveraging the popularity of Pulse Density Modulation (PDM) microphones in modern devices and their similarity to spiking neurons, we propose a direct microphone-to-SNN connection. This approach eliminates intermediate stages, notably reducing computational costs. The system achieved an accuracy of 91.54\% on the Google Speech Command (GSC) dataset, surpassing the state-of-the-art for the Spiking Speech Command (SSC) dataset which is a bio-inspired encoded GSC. Furthermore, the observed sparsity in network activity and connectivity indicates potential for remarkably low energy consumption in a neuromorphic device implementation.
Related papers
- Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia.
Current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring.
We are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs.
arXiv Detail & Related papers (2024-09-06T17:48:44Z) - sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection
with Spiking Neural Networks [51.516451451719654]
Spiking Neural Networks (SNNs) are known to be biologically plausible and power-efficient.
This paper introduces a novel SNN-based Voice Activity Detection model, referred to as sVAD.
It provides effective auditory feature representation through SincNet and 1D convolution, and improves noise robustness with attention mechanisms.
arXiv Detail & Related papers (2024-03-09T02:55:44Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Stochastic Domain Wall-Magnetic Tunnel Junction Artificial Neurons for
Noise-Resilient Spiking Neural Networks [0.0]
We present a scaled DW-MTJ neuron with voltage-dependent probability firing.
validation accuracy during training was also shown to be comparable to an ideal integrate and fire device.
This work shows that DW-MTJ devices can be used to construct noise-resilient networks suitable for neuromorphic computing on the edge.
arXiv Detail & Related papers (2023-04-10T18:00:26Z) - Online Transformers with Spiking Neurons for Fast Prosthetic Hand
Control [1.6114012813668934]
In this paper, instead of the self-attention mechanism, we use a sliding window attention mechanism.
We show that this mechanism is more efficient for continuous signals with finite-range dependencies between input and target.
Our results hold great promises for accurate and fast online processing of sEMG signals for smooth prosthetic hand control.
arXiv Detail & Related papers (2023-03-21T13:59:35Z) - Surrogate Gradient Spiking Neural Networks as Encoders for Large
Vocabulary Continuous Speech Recognition [91.39701446828144]
We show that spiking neural networks can be trained like standard recurrent neural networks using the surrogate gradient method.
They have shown promising results on speech command recognition tasks.
In contrast to their recurrent non-spiking counterparts, they show robustness to exploding gradient problems without the need to use gates.
arXiv Detail & Related papers (2022-12-01T12:36:26Z) - Intrinsic Spike Timing Dependent Plasticity in Stochastic Magnetic
Tunnel Junctions Mediated by Heat Dynamics [0.0]
Neuromorphic computing aims to mimic the behavior of biological neurons and synapses using solid-state devices and circuits.
We propose a method to implement the Spike Timing Dependent Plasticity (STDP) behavior of biological synapses in Magnetic Tunnel Junction (MTJ) devices.
arXiv Detail & Related papers (2021-08-28T18:02:01Z) - Neural Network-based Virtual Microphone Estimator [111.79608275698274]
We propose a neural network-based virtual microphone estimator (NN-VME)
The NN-VME estimates virtual microphone signals directly in the time domain, by utilizing the precise estimation capability of the recent time-domain neural networks.
Experiments on the CHiME-4 corpus show that the proposed NN-VME achieves high virtual microphone estimation performance even for real recordings.
arXiv Detail & Related papers (2021-01-12T06:30:24Z) - TinySpeech: Attention Condensers for Deep Speech Recognition Neural
Networks on Edge Devices [71.68436132514542]
We introduce the concept of attention condensers for building low-footprint, highly-efficient deep neural networks for on-device speech recognition on the edge.
To illustrate its efficacy, we introduce TinySpeech, low-precision deep neural networks tailored for on-device speech recognition.
arXiv Detail & Related papers (2020-08-10T16:34:52Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - Convolutional-Recurrent Neural Networks on Low-Power Wearable Platforms
for Cardiac Arrhythmia Detection [0.18459705687628122]
We focus on the inference of neural networks running in microcontrollers and low-power processors.
We adapted an existing convolutional-recurrent neural network to detect and classify cardiac arrhythmias.
We show our implementation in fixed-point precision, using the CMSIS-NN libraries, with a memory footprint of 195.6KB, and a throughput of 33.98MOps/s.
arXiv Detail & Related papers (2020-01-08T10:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.