ECG-FM: An Open Electrocardiogram Foundation Model
- URL: http://arxiv.org/abs/2408.05178v1
- Date: Fri, 9 Aug 2024 17:06:49 GMT
- Title: ECG-FM: An Open Electrocardiogram Foundation Model
- Authors: Kaden McKeen, Laura Oliva, Sameer Masood, Augustin Toma, Barry Rubin, Bo Wang,
- Abstract summary: We present ECG-FM, an open foundation model for ECG analysis.
ECG-FM adopts a transformer-based architecture and is pretrained on 2.5 million samples.
We show how its command of contextual information results in strong performance, rich pretrained embeddings, and reliable interpretability.
- Score: 3.611746032873298
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The electrocardiogram (ECG) is a ubiquitous diagnostic test. Conventional task-specific ECG analysis models require large numbers of expensive ECG annotations or associated labels to train. Transfer learning techniques have been shown to improve generalization and reduce reliance on labeled data. We present ECG-FM, an open foundation model for ECG analysis, and conduct a comprehensive study performed on a dataset of 1.66 million ECGs sourced from both publicly available and private institutional sources. ECG-FM adopts a transformer-based architecture and is pretrained on 2.5 million samples using ECG-specific augmentations and contrastive learning, as well as a continuous signal masking objective. Our transparent evaluation includes a diverse range of downstream tasks, where we predict ECG interpretation labels, reduced left ventricular ejection fraction, and abnormal cardiac troponin. Affirming ECG-FM's effectiveness as a foundation model, we demonstrate how its command of contextual information results in strong performance, rich pretrained embeddings, and reliable interpretability. Due to a lack of open-weight practices, we highlight how ECG analysis is lagging behind other medical machine learning subfields in terms of foundation model adoption. Our code is available at https://github.com/bowang-lab/ECG-FM/.
Related papers
- DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information [13.680337221159506]
Heart disease remains a significant threat to human health.
Scarcity of high-quality ECG data, driven by privacy concerns and limited medical resources, creates a pressing need for effective ECG signal generation.
We propose DiffuSETS, a novel framework capable of generating ECG signals with high semantic alignment and fidelity.
arXiv Detail & Related papers (2025-01-10T12:55:34Z) - AnyECG: Foundational Models for Electrocardiogram Analysis [36.53693619144332]
Electrocardiogram (ECG) is highly sensitive in detecting acute heart attacks.
This paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data.
Experimental results in anomaly detection, arrhythmia detection, corrupted lead generation, and ultra-long ECG signal analysis demonstrate that AnyECG learns common ECG knowledge from data and significantly outperforms cutting-edge methods in each respective task.
arXiv Detail & Related papers (2024-11-17T17:32:58Z) - Learning General Representation of 12-Lead Electrocardiogram with a Joint-Embedding Predictive Architecture [0.0]
We introduce ECG-JEPA, a self-supervised learning model for 12-lead ECG analysis.
It learns semantic representations of ECG data by predicting in the hidden latent space.
ECG-JEPA achieves state-of-the-art performance in various downstream tasks including ECG classification and feature prediction.
arXiv Detail & Related papers (2024-10-11T06:30:48Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains [17.809094003643523]
We introduce an ECG Foundation Model (ECGFounder) to broaden the diagnostic capabilities of ECG analysis.
ECGFounder was trained on over 10 million ECGs with 150 label categories from the Harvard-Emory ECG Database.
It achieves expert-level performance on internal validation sets, with AUROC exceeding 0.95 for eighty diagnoses.
arXiv Detail & Related papers (2024-10-05T12:12:02Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - ME-GAN: Learning Panoptic Electrocardio Representations for Multi-view
ECG Synthesis Conditioned on Heart Diseases [24.52989747071257]
We propose a disease-aware generative adversarial network for multi-view ECG synthesis called ME-GAN.
Since ECG manifestations of heart diseases are often localized in specific waveforms, we propose a new "mixup normalization" to inject disease information precisely into suitable locations.
Comprehensive experiments verify that our ME-GAN performs well on multi-view ECG signal synthesis with trusty morbid manifestations.
arXiv Detail & Related papers (2022-07-21T14:14:02Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.