Fault-tolerant quantum input/output
- URL: http://arxiv.org/abs/2408.05260v2
- Date: Fri, 1 Nov 2024 18:27:51 GMT
- Title: Fault-tolerant quantum input/output
- Authors: Matthias Christandl, Omar Fawzi, Ashutosh Goswami,
- Abstract summary: We show that any quantum circuit with quantum input and output can be transformed into a fault-tolerant circuit.
The framework allows the direct composition of the statements, enabling versatile future applications.
- Score: 6.787248655856051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Usual scenarios of fault-tolerant computation are concerned with the fault-tolerant realization of quantum algorithms that compute classical functions, such as Shor's algorithm for factoring. In particular, this means that input and output to the quantum algorithm are classical. In contrast to stand-alone single-core quantum computers, in many distributed scenarios, quantum information might have to be passed on from one quantum information processing system to another one, possibly via noisy quantum communication channels with noise levels above fault-tolerant thresholds. In such situations, quantum information processing devices will have quantum inputs, quantum outputs or even both, which pass qubits among each other. Working in the fault-tolerant framework of [Kitaev, 1997], we show that any quantum circuit with quantum input and output can be transformed into a fault-tolerant circuit that produces the ideal circuit with some controlled noise applied at the input and output. The framework allows the direct composition of the statements, enabling versatile future applications. We illustrate this with two concrete applications. The first one concerns communication over a noisy channel with faulty encoding and decoding operations [Christandl and M{\"u}ller-Hermes, 2024]. For communication codes with linear minimum distance, we construct fault-tolerant encoders and decoders for general noise (including coherent errors). For the weaker, but standard, model of local stochastic noise, we obtain fault-tolerant encoders and decoders for any communication code that can correct a constant fraction random errors. In the second application, we use our result for a state preparation circuit within the construction of [Gottesman, 2014] to establish that fault-tolerant quantum computation for general noise can be achieved with constant space overhead.
Related papers
- Reshaping quantum device noise via quantum error correction [0.818005422059368]
We show that quantum error correction codes can reshape the native noise profiles of quantum devices.
We analytically derive the quantum channels describing noisy two-qubit entangling gates.
We then demonstrate the noise reshaping on the IonQ Aria-1 quantum hardware.
arXiv Detail & Related papers (2024-11-01T17:20:04Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
We present a quantum circuit synthesis algorithm for implementing universal fault-tolerant quantum computing based on geometricd codes.
We show how to synthesize the set of universal fault-tolerant protocols for $[[7,1,3]]$ Steane code and the syndrome measurement protocol of $[[23, 1, 7]]$ Golay code.
arXiv Detail & Related papers (2022-06-06T15:43:36Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.