Reshaping quantum device noise via quantum error correction
- URL: http://arxiv.org/abs/2411.00751v1
- Date: Fri, 01 Nov 2024 17:20:04 GMT
- Title: Reshaping quantum device noise via quantum error correction
- Authors: Yue Ma, Michael Hanks, Evdokia Gneusheva, M. S. Kim,
- Abstract summary: We show that quantum error correction codes can reshape the native noise profiles of quantum devices.
We analytically derive the quantum channels describing noisy two-qubit entangling gates.
We then demonstrate the noise reshaping on the IonQ Aria-1 quantum hardware.
- Score: 0.818005422059368
- License:
- Abstract: We show that quantum error correction codes can reshape the native noise profiles of quantum devices, explicitly considering trapped-ion systems. We analytically derive the quantum channels describing noisy two-qubit entangling gates, showing that the leading error term is the sum of single-qubit bit-flip errors. This motivates our choice of compatible quantum error correction code -- the bit-flip repetition code, based on which we add a parameterised single-qubit gate for extra tunability. We analytically derive the resulting logical quantum channel, illustrating the noise profile transformation. We then demonstrate the noise reshaping on the IonQ Aria-1 quantum hardware, where the data shows consistency with our analytical model. Our results represent first step towards using quantum error correction codes in genuine quantum ways, paving the way to exploiting the device native noise as features for open quantum dynamics simulations.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Routing for Emerging Quantum Networks [0.0]
Quantum routing, the entanglement of an input quantum signal over multiple output paths, will be an important aspect of future quantum networks.
We design a combined circuit for quantum routing and quantum error correction, and carry out the first implementation of such a circuit on a noisy real-world quantum device.
Our experiments validate, for the first time, that error-corrected quantum routing in near-term noisy quantum-computing devices is feasible.
arXiv Detail & Related papers (2022-11-11T08:58:29Z) - Quantum Error Correction with Quantum Autoencoders [0.0]
We show how quantum neural networks can be trained to learn optimal strategies for active detection and correction of errors.
We highlight that the denoising capabilities of quantum autoencoders are not limited to the protection of specific states but extend to the entire logical codespace.
arXiv Detail & Related papers (2022-02-01T16:55:14Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Testing a Quantum Error-Correcting Code on Various Platforms [5.0745290104790035]
We propose a simple quantum error-correcting code for the detected amplitude damping channel.
We implement the encoding, the channel, and the recovery on an optical platform, the IBM Q System, and a nuclear magnetic resonance system.
arXiv Detail & Related papers (2020-01-22T13:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.