MUSE: Multi-Knowledge Passing on the Edges, Boosting Knowledge Graph Completion
- URL: http://arxiv.org/abs/2408.05283v1
- Date: Fri, 9 Aug 2024 18:10:02 GMT
- Title: MUSE: Multi-Knowledge Passing on the Edges, Boosting Knowledge Graph Completion
- Authors: Pengjie Liu,
- Abstract summary: Knowledge Graph Completion aims to predict the missing information in the (head entity)-[relation]-(tail entity) triplet.
We propose MUSE, a knowledge-aware reasoning model to learn a tailored embedding space in three dimensions for missing relation prediction.
Our experimental results show that MUSE significantly outperforms other baselines on four public datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Graph Completion (KGC) aims to predict the missing information in the (head entity)-[relation]-(tail entity) triplet. Deep Neural Networks have achieved significant progress in the relation prediction task. However, most existing KGC methods focus on single features (e.g., entity IDs) and sub-graph aggregation, which cannot fully explore all the features in the Knowledge Graph (KG), and neglect the external semantic knowledge injection. To address these problems, we propose MUSE, a knowledge-aware reasoning model to learn a tailored embedding space in three dimensions for missing relation prediction through a multi-knowledge representation learning mechanism. Our MUSE consists of three parallel components: 1) Prior Knowledge Learning for enhancing the triplets' semantic representation by fine-tuning BERT; 2) Context Message Passing for enhancing the context messages of KG; 3) Relational Path Aggregation for enhancing the path representation from the head entity to the tail entity. Our experimental results show that MUSE significantly outperforms other baselines on four public datasets, such as over 5.50% improvement in H@1 and 4.20% improvement in MRR on the NELL995 dataset. The code and all datasets will be released via https://github.com/NxxTGT/MUSE.
Related papers
- MUSE: Integrating Multi-Knowledge for Knowledge Graph Completion [0.0]
Knowledge Graph Completion (KGC) aims to predict the missing [relation] part (head entity)--[relation]->(tail entity) triplet.
Most existing KGC methods focus on single features (e.g., relation types) or sub-graph aggregation.
We propose a knowledge-aware reasoning model (MUSE) which designs a novel multi-knowledge representation learning mechanism for missing relation prediction.
arXiv Detail & Related papers (2024-09-26T04:48:20Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - KERMIT: Knowledge Graph Completion of Enhanced Relation Modeling with Inverse Transformation [19.31783654838732]
We use large language models to generate coherent descriptions, bridging the semantic gap between queries and answers.
We also utilize inverse relations to create a symmetric graph, thereby providing augmented training samples for KGC.
Our approach achieves a 4.2% improvement in Hit@1 on WN18RR and a 3.4% improvement in Hit@3 on FB15k-237, demonstrating superior performance.
arXiv Detail & Related papers (2023-09-26T09:03:25Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
Few-shot knowledge graph completion (FKGC) aims to predict missing facts for unseen relations with few-shot associated facts.
Existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems.
In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC)
arXiv Detail & Related papers (2023-04-17T11:42:28Z) - Detecting Owner-member Relationship with Graph Convolution Network in
Fisheye Camera System [9.665475078766017]
We propose an innovative relationship prediction method, DeepWORD, by designing a graph convolutional network (GCN)
In the experiments we learned that the proposed method achieved state-of-the-art accuracy and real-time performance.
arXiv Detail & Related papers (2022-01-28T13:12:27Z) - LP-BERT: Multi-task Pre-training Knowledge Graph BERT for Link
Prediction [3.5382535469099436]
LP-BERT contains two training stages: multi-task pre-training and knowledge graph fine-tuning.
We achieve state-of-the-art results on WN18RR and UMLS datasets, especially the Hits@10 indicator improved by 5%.
arXiv Detail & Related papers (2022-01-13T09:18:30Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked graph autoencoder (MGAE) framework to perform effective learning on graph structure data.
Taking insights from self-supervised learning, we randomly mask a large proportion of edges and try to reconstruct these missing edges during training.
arXiv Detail & Related papers (2022-01-07T16:48:07Z) - Siamese Attribute-missing Graph Auto-encoder [35.79233150253881]
We propose Siamese Attribute-missing Graph Auto-encoder (SAGA)
First, we entangle the attribute embedding and structure embedding by introducing a siamese network structure to share the parameters learned by both processes.
Second, we introduce a K-nearest neighbor (KNN) and structural constraint enhanced learning mechanism to improve the quality of latent features of the missing attributes.
arXiv Detail & Related papers (2021-12-09T11:21:31Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization
and Completion [99.47414073164656]
A comprehensive knowledge graph (KG) contains an instance-level entity graph and an ontology-level concept graph.
The two-view KG provides a testbed for models to "simulate" human's abilities on knowledge abstraction, concretization, and completion.
We propose a unified KG benchmark by improving existing benchmarks in terms of dataset scale, task coverage, and difficulty.
arXiv Detail & Related papers (2020-04-28T16:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.