Optimizing Pulse Shapes of an Echoed Conditional Displacement Gate in a Superconducting Bosonic System
- URL: http://arxiv.org/abs/2408.05299v1
- Date: Fri, 9 Aug 2024 18:49:09 GMT
- Title: Optimizing Pulse Shapes of an Echoed Conditional Displacement Gate in a Superconducting Bosonic System
- Authors: Maxime Lapointe-Major, Yongchao Tang, Mehmet Canturk, Pooya Ronagh,
- Abstract summary: We show that there is a lower bound for the gate time in the standard construction of an ECD gate.
We present a method for optimizing the pulse shape of an ECD gate using a pulse-shaping technique subject to a set of experimental constraints.
We demonstrate that the total gate time of an ECD gate for a small value of $beta$ can be reduced either by relaxing the no-overlap constraint on the primitives used in the standard construction or via our optimal-control method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Echoed conditional displacement (ECD) gates for bosonic systems have become the key element for real-time quantum error correction beyond the break-even point. These gates are characterized by a single complex parameter $\beta$, and can be constructed using Gaussian pulses and free evolutions with the help of an ancillary transmon qubit. We show that there is a lower bound for the gate time in the standard construction of an ECD gate. We present a method for optimizing the pulse shape of an ECD gate using a pulse-shaping technique subject to a set of experimental constraints. Our optimized pulse shapes remain symmetric, and can be applied to a range of target values of $\beta$ by tuning only the amplitude. We demonstrate that the total gate time of an ECD gate for a small value of $\beta$ can be reduced either by relaxing the no-overlap constraint on the primitives used in the standard construction or via our optimal-control method. We show a slight advantage of the optimal-control method by demonstrating a reduction in the preparation time of a $|+Z_\mathrm{GKP}>$ logical state by $\thicksim$$10\%$.
Related papers
- High-performance conditional-driving gate for Kerr parametric oscillator qubits [0.0]
We show that an AC-Zeeman shift due to the flux pulse for the gate operation largely affects the gate performance.
We propose a method to cancel this undesirable effect.
We numerically demonstrate a conditional-driving gate with average fidelity exceeding 99.9$%$ twice faster than that without the proposed method.
arXiv Detail & Related papers (2024-10-01T09:58:52Z) - Optimal Control of Spin Qudits Subject to Decoherence Using Amplitude-and-Frequency-Constrained Pulses [44.99833362998488]
We introduce a formulation that allows us to bound the maximum amplitude and frequency of the signals.
The pulses we obtain consistently enhance operation fidelities compared to those achieved with Schr"odinger's equation.
arXiv Detail & Related papers (2024-03-23T10:10:38Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Robustness of a universal gate set implementation in transmon systems
via Chopped Random Basis optimal control [50.591267188664666]
We numerically study the implementation of a universal two-qubit gate set, composed of CNOT, Hadamard, phase and $pi/8$ gates, for transmon-based systems.
The control signals to implement such gates are obtained using the Chopped Random Basis optimal control technique, with a target gate infidelity of $10-2$.
arXiv Detail & Related papers (2022-07-27T10:55:15Z) - Designing globally optimal entangling gates using geometric space curves [0.0]
We show that in the case of weakly coupled qubits, it is possible to find all pulses that implement a target entangling gate.
We illustrate our method by designing fast, CNOT-equivalent entangling gates for silicon quantum dot spin qubits with fidelities exceeding 99%.
arXiv Detail & Related papers (2022-04-06T14:46:56Z) - Single temporal-pulse-modulated parameterized controlled-phase gate for
Rydberg atoms [1.6114012813668934]
We propose an adiabatic protocol for implementing a controlled-phase gate CZ$_theta$ with continuous $theta$ of neutral atoms.
For a wide range of $theta$, we can obtain the fidelity of CZ$_theta$ gate over $99.7%$ in less than $1mu$s.
arXiv Detail & Related papers (2022-01-16T07:40:26Z) - Optimal control of molecular spin qudits [58.720142291102135]
We demonstrate, numerically, the possibility of manipulating the spin states of molecular nanomagnets with shaped microwave pulses.
The state-to-state or full gate transformations can be performed in this way in shorter times than using simple monochromatic resonant pulses.
The application of optimal control techniques can facilitate the implementation of quantum technologies based on molecular spin qudits.
arXiv Detail & Related papers (2021-11-30T11:50:46Z) - Binary Optimal Control Of Single-Flux-Quantum Pulse Sequences [0.0]
We introduce a binary, relaxed gradient, trust-region method for optimizing pulse sequences for single flux quanta (SFQ) control of a quantum computer.
We present numerical results for the H and X gates, where the optimized pulse sequences give gate fidelity's better than $99.9%$, in $approx 25$ trust-region.
arXiv Detail & Related papers (2021-06-18T19:40:10Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.