論文の概要: Neural Machine Unranking
- arxiv url: http://arxiv.org/abs/2408.05330v1
- Date: Fri, 9 Aug 2024 20:36:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 19:32:21.856079
- Title: Neural Machine Unranking
- Title(参考訳): ニューラルマシンアングレード
- Authors: Jingrui Hou, Axel Finke, Georgina Cosma,
- Abstract要約: 我々はニューラル・マシン・アンランキング(NuMuR)と呼ばれるニューラル情報検索における機械学習の課題に取り組む。
我々は、CoCoL(Contrastive and Consistent Loss)と呼ばれるNuMuRの方法論を開発する。
実験により,CoCoLは既存の技術よりも効率的かつ制御可能なデータ除去を容易にすることが示された。
- 参考スコア(独自算出の注目度): 3.2340528215722553
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We tackle the problem of machine unlearning within neural information retrieval, termed Neural Machine UnRanking (NuMuR) for short. Many of the mainstream task- or model-agnostic approaches for machine unlearning were designed for classification tasks. First, we demonstrate that these methods perform poorly on NuMuR tasks due to the unique challenges posed by neural information retrieval. Then, we develop a methodology for NuMuR named Contrastive and Consistent Loss (CoCoL), which effectively balances the objectives of data forgetting and model performance retention. Experimental results demonstrate that CoCoL facilitates more effective and controllable data removal than existing techniques.
- Abstract(参考訳): ニューラル・マシン・アンランキング(ニューラル・マシン・アンランキング、NuMuR)と呼ばれる、ニューラルネットワーク検索における機械学習の問題に取り組む。
機械学習における主要なタスクやモデルに依存しないアプローチの多くは、分類タスクのために設計された。
まず,これらの手法がニューラル情報検索によって引き起こされる独特な課題により,NuMuRのタスクに対して不十分に動作することを示す。
次に,NuMuR における Contrastive and Consistent Loss (CoCoL) という手法を開発し,データ忘れることの目的と性能保持を効果的にバランスさせる。
実験により,CoCoLは既存の技術よりも効率的かつ制御可能なデータ除去を容易にすることが示された。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
本研究は,Centroid Kinematics (DUCK) による遠隔学習(Distance-based Unlearning)と呼ばれる新しいアンラーニングアルゴリズムを導入する。
アルゴリズムの性能評価は、様々なベンチマークデータセットにまたがって行われる。
また,適応学習スコア (Adaptive Unlearning Score, AUS) と呼ばれる新しい指標を導入し, 対象データに対する未学習プロセスの有効性だけでなく, 元のモデルに対する性能損失の定量化も行った。
論文 参考訳(メタデータ) (2023-12-04T17:10:25Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
破滅的な忘れは、機械学習の分野で重要な課題である。
本稿では,機械学習アプリケーションにおける破滅的忘れを防止する新しい方法を提案する。
論文 参考訳(メタデータ) (2023-11-30T22:43:50Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Generative Adversarial Networks Unlearning [13.342749941357152]
機械学習は、訓練された機械学習モデルからトレーニングデータを消去するソリューションとして登場した。
GAN(Generative Adversarial Networks)の研究は、ジェネレータと識別器を含む独自のアーキテクチャによって制限されている。
本稿では,GANモデルにおける項目学習とクラス学習の両方を対象としたケースドアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-19T02:21:21Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
ベイズニューラルネットワークは、アンサンブルに基づく不確実性を捕捉する技術よりも効率的であることを示す。
また,近年,モンテカルロのドロップアウトよりも効果的であることが判明したアンサンブル技法の重要な欠点も明らかにした。
論文 参考訳(メタデータ) (2021-04-02T06:02:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。