Trusting Your AI Agent Emotionally and Cognitively: Development and Validation of a Semantic Differential Scale for AI Trust
- URL: http://arxiv.org/abs/2408.05354v2
- Date: Thu, 07 Nov 2024 20:34:20 GMT
- Title: Trusting Your AI Agent Emotionally and Cognitively: Development and Validation of a Semantic Differential Scale for AI Trust
- Authors: Ruoxi Shang, Gary Hsieh, Chirag Shah,
- Abstract summary: We develop and validated a set of 27-item semantic differential scales for affective and cognitive trust.
Our empirical findings showed how the emotional and cognitive aspects of trust interact with each other and collectively shape a person's overall trust in AI agents.
- Score: 16.140485357046707
- License:
- Abstract: Trust is not just a cognitive issue but also an emotional one, yet the research in human-AI interactions has primarily focused on the cognitive route of trust development. Recent work has highlighted the importance of studying affective trust towards AI, especially in the context of emerging human-like LLMs-powered conversational agents. However, there is a lack of validated and generalizable measures for the two-dimensional construct of trust in AI agents. To address this gap, we developed and validated a set of 27-item semantic differential scales for affective and cognitive trust through a scenario-based survey study. We then further validated and applied the scale through an experiment study. Our empirical findings showed how the emotional and cognitive aspects of trust interact with each other and collectively shape a person's overall trust in AI agents. Our study methodology and findings also provide insights into the capability of the state-of-art LLMs to foster trust through different routes.
Related papers
- Trust in AI: Progress, Challenges, and Future Directions [6.724854390957174]
The increasing use of artificial intelligence (AI) systems in our daily life explains the significance of trust/distrust in AI from a user perspective.
Trust/distrust in AI plays the role of a regulator and could significantly control the level of this diffusion.
arXiv Detail & Related papers (2024-03-12T20:26:49Z) - Common (good) practices measuring trust in HRI [55.2480439325792]
Trust in robots is widely believed to be imperative for the adoption of robots into people's daily lives.
Researchers have been exploring how people trust robot in different ways.
Most roboticists agree that insufficient levels of trust lead to a risk of disengagement.
arXiv Detail & Related papers (2023-11-20T20:52:10Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
Modern NLP systems are often uncalibrated, resulting in confidently incorrect predictions that undermine user trust.
We study the evolution of user trust in response to trust-eroding events using a betting game.
arXiv Detail & Related papers (2023-10-20T14:41:46Z) - Distrust in (X)AI -- Measurement Artifact or Distinct Construct? [0.0]
Trust is a key motivation in developing explainable artificial intelligence (XAI)
Distrust seems relatively understudied in XAI.
psychometric evidence favors a distinction between trust and distrust.
arXiv Detail & Related papers (2023-03-29T07:14:54Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
We draw from communication theories and literature on trust in technologies to develop a conceptual model called MATCH.
We highlight transparency and interaction as AI systems' affordances that present a wide range of trustworthiness cues to users.
We propose a checklist of requirements to help technology creators identify appropriate cues to use.
arXiv Detail & Related papers (2022-04-29T00:14:33Z) - Trust in AI and Its Role in the Acceptance of AI Technologies [12.175031903660972]
This paper explains the role of trust on the intention to use AI technologies.
Study 1 examined the role of trust in the use of AI voice assistants based on survey responses from college students.
Study 2, using data from a representative sample of the U.S. population, different dimensions of trust were examined.
arXiv Detail & Related papers (2022-03-23T19:18:19Z) - Trust in AI: Interpretability is not necessary or sufficient, while
black-box interaction is necessary and sufficient [0.0]
The problem of human trust in artificial intelligence is one of the most fundamental problems in applied machine learning.
We draw from statistical learning theory and sociological lenses on human-automation trust to motivate an AI-as-tool framework.
We clarify the role of interpretability in trust with a ladder of model access.
arXiv Detail & Related papers (2022-02-10T19:59:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
We discuss a model of trust inspired by, but not identical to, sociology's interpersonal trust (i.e., trust between people)
We incorporate a formalization of 'contractual trust', such that trust between a user and an AI is trust that some implicit or explicit contract will hold.
We discuss how to design trustworthy AI, how to evaluate whether trust has manifested, and whether it is warranted.
arXiv Detail & Related papers (2020-10-15T03:07:23Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.