Measurement of LLM's Philosophies of Human Nature
- URL: http://arxiv.org/abs/2504.02304v1
- Date: Thu, 03 Apr 2025 06:22:19 GMT
- Title: Measurement of LLM's Philosophies of Human Nature
- Authors: Minheng Ni, Ennan Wu, Zidong Gong, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Kevin Lin, Lijuan Wang, Wangmeng Zuo,
- Abstract summary: We design the standardized psychological scale specifically targeting large language models (LLM)<n>We show that current LLMs exhibit a systemic lack of trust in humans.<n>We propose a mental loop learning framework, which enables LLM to continuously optimize its value system.
- Score: 113.47929131143766
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The widespread application of artificial intelligence (AI) in various tasks, along with frequent reports of conflicts or violations involving AI, has sparked societal concerns about interactions with AI systems. Based on Wrightsman's Philosophies of Human Nature Scale (PHNS), a scale empirically validated over decades to effectively assess individuals' attitudes toward human nature, we design the standardized psychological scale specifically targeting large language models (LLM), named the Machine-based Philosophies of Human Nature Scale (M-PHNS). By evaluating LLMs' attitudes toward human nature across six dimensions, we reveal that current LLMs exhibit a systemic lack of trust in humans, and there is a significant negative correlation between the model's intelligence level and its trust in humans. Furthermore, we propose a mental loop learning framework, which enables LLM to continuously optimize its value system during virtual interactions by constructing moral scenarios, thereby improving its attitude toward human nature. Experiments demonstrate that mental loop learning significantly enhances their trust in humans compared to persona or instruction prompts. This finding highlights the potential of human-based psychological assessments for LLM, which can not only diagnose cognitive biases but also provide a potential solution for ethical learning in artificial intelligence. We release the M-PHNS evaluation code and data at https://github.com/kodenii/M-PHNS.
Related papers
- Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models [2.9312156642007294]
We systematically review Large Language Models' capabilities across three important cognitive domains: decision-making biases, reasoning, and creativity.<n>On decision-making, our synthesis reveals that while LLMs demonstrate several human-like biases, some biases observed in humans are absent.<n>On reasoning, advanced LLMs like GPT-4 exhibit deliberative reasoning akin to human System-2 thinking, while smaller models fall short of human-level performance.<n>A distinct dichotomy emerges in creativity: while LLMs excel in language-based creative tasks, such as storytelling, they struggle with divergent thinking tasks that require real-world context.
arXiv Detail & Related papers (2024-12-20T02:26:56Z) - Can Machines Think Like Humans? A Behavioral Evaluation of LLM-Agents in Dictator Games [7.504095239018173]
Large Language Model (LLM)-based agents increasingly undertake real-world tasks and engage with human society.
We investigate how different personas and experimental framings affect these AI agents' altruistic behavior in dictator games.
We show that assigning a human-like identity to LLMs does not produce human-like behaviors.
arXiv Detail & Related papers (2024-10-28T17:47:41Z) - CogErgLLM: Exploring Large Language Model Systems Design Perspective Using Cognitive Ergonomics [0.0]
Integrating cognitive ergonomics with LLMs is crucial for improving safety, reliability, and user satisfaction in human-AI interactions.
Current LLM designs often lack this integration, resulting in systems that may not fully align with human cognitive capabilities and limitations.
arXiv Detail & Related papers (2024-07-03T07:59:52Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
This work proposes a novel framework, ValueLex, to reconstruct Large Language Models' unique value system from scratch.
Based on Lexical Hypothesis, ValueLex introduces a generative approach to elicit diverse values from 30+ LLMs.
We identify three core value dimensions, Competence, Character, and Integrity, each with specific subdimensions, revealing that LLMs possess a structured, albeit non-human, value system.
arXiv Detail & Related papers (2024-04-19T09:44:51Z) - Violation of Expectation via Metacognitive Prompting Reduces Theory of
Mind Prediction Error in Large Language Models [0.0]
Large Language Models (LLMs) exhibit a compelling level of proficiency in Theory of Mind (ToM) tasks.
This ability to impute unobservable mental states to others is vital to human social cognition and may prove equally important in principal-agent relations between humans and Artificial Intelligences (AIs)
arXiv Detail & Related papers (2023-10-10T20:05:13Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z) - Principle-Driven Self-Alignment of Language Models from Scratch with
Minimal Human Supervision [84.31474052176343]
Recent AI-assistant agents, such as ChatGPT, rely on supervised fine-tuning (SFT) with human annotations and reinforcement learning from human feedback to align the output with human intentions.
This dependence can significantly constrain the true potential of AI-assistant agents due to the high cost of obtaining human supervision.
We propose a novel approach called SELF-ALIGN, which combines principle-driven reasoning and the generative power of LLMs for the self-alignment of AI agents with minimal human supervision.
arXiv Detail & Related papers (2023-05-04T17:59:28Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Who's Thinking? A Push for Human-Centered Evaluation of LLMs using the
XAI Playbook [30.985555463848264]
We draw parallels between the relatively mature field of XAI and the rapidly evolving research boom around large language models.
We argue that humans' tendencies should rest front and center when evaluating deployed large language models.
arXiv Detail & Related papers (2023-03-10T22:15:49Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.