論文の概要: Temporal Analysis and Repair of Flaky Dockerfiles
- arxiv url: http://arxiv.org/abs/2408.05379v1
- Date: Fri, 9 Aug 2024 23:17:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 19:21:55.211381
- Title: Temporal Analysis and Repair of Flaky Dockerfiles
- Title(参考訳): 燃えるようなDockerファイルの時間的解析と修復
- Authors: Taha Shabani, Noor Nashid, Parsa Alian, Ali Mesbah,
- Abstract要約: Dockerfileのフレキネスは、Dockerfileやプロジェクトのソースコードの変更なしに、一貫性のないビルド動作によって特徴づけられる。
本稿では、依存性関連エラーやサーバ接続の問題など、一般的なフレキネスカテゴリの包括的分類について述べる。
我々はFrakiDockを紹介した。これは大規模な言語モデルと検索拡張生成技術を利用して、不安定なDockerfileを自動的に修復するツールだ。
- 参考スコア(独自算出の注目度): 6.518508607788089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dockerfile flakiness, characterized by inconsistent build behavior without Dockerfile or project source code changes, poses significant challenges in Continuous Integration and Delivery (CI/CD) pipelines. This issue can lead to unreliable deployments and increased debugging efforts, yet it remains underexplored in current research. We conduct a systematic analysis of Dockerfile flakiness, presenting a comprehensive taxonomy of common flakiness categories, including dependency-related errors and server connectivity issues. Furthermore, we introduce FlakiDock, a tool leveraging large language models and retrieval-augmented generation techniques with dynamic analysis and an iterative feedback loop to automatically repair flaky Dockerfiles. Our evaluation shows that FlakiDock achieves a 73.55% repair accuracy, outperforming existing tools such as PARFUM by 12,581% and GPT-4-based prompting by 94.63%. These results underscore the effectiveness of FlakiDock in addressing Dockerfile flakiness and improving build reliability.
- Abstract(参考訳): Dockerfile flakinessは、Dockerfileやプロジェクトソースコードの変更なしに、一貫性のないビルド動作を特徴とするもので、継続的インテグレーションとデリバリ(CI/CD)パイプラインにおいて大きな課題を提起している。
この問題は、信頼性の低いデプロイメントやデバッグ作業の増加につながる可能性があるが、現在の調査では未検討である。
Dockerfileのフレキネスを体系的に分析し、依存関係関連のエラーやサーバ接続の問題を含む、一般的なフレキネスカテゴリの包括的な分類を提示する。
さらに,大規模な言語モデルと検索拡張生成技術を活用した動的解析ツールであるFrakiDockと,不安定なDockerfileを自動的に修復するための反復的なフィードバックループも紹介した。
評価の結果,FrakiDockの修理精度は73.55%で,PARFUMの12,581%,GPT-4の94.63%を突破した。
これらの結果は、Dockerfileのフレキネスに対処し、ビルドの信頼性を向上させる上で、FrakiDockの有効性を強調している。
関連論文リスト
- Refactoring for Dockerfile Quality: A Dive into Developer Practices and Automation Potential [0.0]
本稿では,358のオープンソースプロジェクトの600fileを使用したDockerfileの自動化の有用性と実用性について検討する。
提案手法では,画像サイズが平均32%減少し,ビルド期間が6%減少し,77%,91%の症例で理解性と保守性が向上した。
論文 参考訳(メタデータ) (2025-01-23T23:10:47Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
継続的なテスト時間適応は、訓練済みのソースモデルを適用して、教師なしのターゲットドメインを継続的に変更する。
我々は、オンライン環境、教師なしの自然、エラー蓄積や破滅的な忘れのリスクなど、このタスクの課題を分析する。
教師なしシングルパスデータストリームから重要サンプルを高い確実性で識別・集約する不確実性を考慮したバッファリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T15:48:40Z) - Multi-Granularity Detector for Vulnerability Fixes [13.653249890867222]
脆弱性修正のためのMiDa(Multi-Granularity Detector for Vulnerability Fixes)を提案する。
MiDasはコミットレベル、ファイルレベル、ハンクレベル、ラインレベルに対応して、コード変更の粒度ごとに異なるニューラルネットワークを構築する。
MiDasは、現在の最先端のベースラインをAUCで4.9%、JavaとPythonベースのデータセットで13.7%上回っている。
論文 参考訳(メタデータ) (2023-05-23T10:06:28Z) - An Unbiased Transformer Source Code Learning with Semantic Vulnerability
Graph [3.3598755777055374]
現在の脆弱性スクリーニング技術は、新しい脆弱性を特定したり、開発者がコード脆弱性と分類を提供するのに効果がない。
これらの問題に対処するために,変換器 "RoBERTa" とグラフ畳み込みニューラルネットワーク (GCN) を組み合わせたマルチタスク・アンバイアス脆弱性分類器を提案する。
本稿では、逐次フロー、制御フロー、データフローからエッジを統合することで生成されたソースコードからのセマンティック脆弱性グラフ(SVG)表現と、Poacher Flow(PF)と呼ばれる新しいフローを利用したトレーニングプロセスを提案する。
論文 参考訳(メタデータ) (2023-04-17T20:54:14Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - DRIVE: Dockerfile Rule Mining and Violation Detection [6.510749313511299]
DockerfileはDockerイメージを構築するための一連の命令を定義し、コンテナ化されたアプリケーションをサポートするためにインスタンス化することができる。
最近の研究は、Dockerfileのかなりの品質問題を明らかにしている。
我々は、暗黙のルールをマイニングし、Dockerfileでそのようなルールの潜在的な違反を検出する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-12T01:15:30Z) - FedFA: Federated Learning with Feature Anchors to Align Features and
Classifiers for Heterogeneous Data [8.677832361022809]
フェデレーション学習は、複数のクライアントがデータを交換することなく、協調的にモデルをトレーニングすることを可能にする。
一般的な解決策は、局所訓練中に体重のばらつきや特徴の不整合を規則化する補助的な損失を含む。
我々はFederated Learning with Feature Anchors (FedFA)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-17T02:27:44Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
ロバストネスのベンチマークにおける主な課題は、その評価がしばしばエラーを起こし、ロバストネス過大評価につながることである。
我々は,白箱攻撃と黒箱攻撃のアンサンブルであるAutoAttackを用いて,敵対的ロバスト性を評価する。
分散シフト,キャリブレーション,アウト・オブ・ディストリビューション検出,フェアネス,プライバシリーク,スムースネス,転送性に対するロバスト性の影響を解析した。
論文 参考訳(メタデータ) (2020-10-19T17:06:18Z) - Learning perturbation sets for robust machine learning [97.6757418136662]
我々は、潜在空間の制約領域上に設定された摂動を定義する条件生成器を用いる。
学習した摂動集合の質を定量的かつ質的に測定する。
我々は、学習した摂動集合を利用して、敵画像の破損や逆光の変動に対して経験的かつ確実に堅牢なモデルを訓練する。
論文 参考訳(メタデータ) (2020-07-16T16:39:54Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。