論文の概要: Dockerfile Flakiness: Characterization and Repair
- arxiv url: http://arxiv.org/abs/2408.05379v2
- Date: Tue, 11 Feb 2025 20:50:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:46:45.062253
- Title: Dockerfile Flakiness: Characterization and Repair
- Title(参考訳): Dockerfile Flakiness: キャラクタリゼーションとリカバリ
- Authors: Taha Shabani, Noor Nashid, Parsa Alian, Ali Mesbah,
- Abstract要約: Dockerfileのフレキネスに関する最初の包括的な研究で、Docker化された8,132のプロジェクトの9ヶ月にわたる分析を特徴としている。
本稿では,依存性エラーやサーバ接続の問題など,一般的なフラキネスの原因を分類する分類法を提案する。
静的および動的解析,類似性検索,および大規模言語モデルを用いた反復的フィードバックループを組み合わせた新しい修復フレームワークであるFLAKIDOCKを紹介する。
- 参考スコア(独自算出の注目度): 6.518508607788089
- License:
- Abstract: Dockerfile flakiness-unpredictable temporal build failures caused by external dependencies and evolving environments-undermines deployment reliability and increases debugging overhead. Unlike traditional Dockerfile issues, flakiness occurs without modifications to the Dockerfile itself, complicating its resolution. In this work, we present the first comprehensive study of Dockerfile flakiness, featuring a nine-month analysis of 8,132 Dockerized projects, revealing that around 10% exhibit flaky behavior. We propose a taxonomy categorizing common flakiness causes, including dependency errors and server connectivity issues. Existing tools fail to effectively address these challenges due to their reliance on pre-defined rules and limited generalizability. To overcome these limitations, we introduce FLAKIDOCK, a novel repair framework combining static and dynamic analysis, similarity retrieval, and an iterative feedback loop powered by Large Language Models (LLMs). Our evaluation demonstrates that FLAKIDOCK achieves a repair accuracy of 73.55%, significantly surpassing state-of-the-art tools and baselines.
- Abstract(参考訳): Dockerfileのフレキネス、外部依存関係による予測不可能な一時的なビルド障害、環境の進化により、デプロイメントの信頼性が損なわれ、デバッグのオーバーヘッドが増大する。
従来のDockerfile問題とは異なり、フレキネスはDockerfile自体を変更することなく発生し、その解決が複雑になる。
この研究では、Dockerfileのフレキネスに関する初の総合的研究を行い、8,132のDocker化プロジェクトの9ヶ月にわたる分析を行い、約10%がフレキな振る舞いを示していることを明らかにした。
本稿では,依存性エラーやサーバ接続の問題など,一般的なフラキネスの原因を分類する分類法を提案する。
既存のツールは、事前定義されたルールと限定された一般化可能性に依存しているため、これらの課題に効果的に対処できない。
これらの制約を克服するために,静的および動的解析と類似性検索を組み合わせた新しい修復フレームワークであるFLAKIDOCKと,Large Language Models (LLM) を用いた反復フィードバックループを導入する。
FLAKIDOCKの修復精度は73.55%で,最先端のツールやベースラインをはるかに上回っている。
関連論文リスト
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - FineWAVE: Fine-Grained Warning Verification of Bugs for Automated Static Analysis Tools [18.927121513404924]
ASAT(Automated Static Analysis Tools)は、バグ検出を支援するために、時間とともに進化してきた。
これまでの研究は、報告された警告を検証するための学習ベースの方法を探究してきた。
我々は,バグに敏感な警告をきめ細かい粒度で検証する学習ベースアプローチであるFineWAVEを提案する。
論文 参考訳(メタデータ) (2024-03-24T06:21:35Z) - Empirical Analysis of Vulnerabilities Life Cycle in Golang Ecosystem [0.773844059806915]
Golangの脆弱性のライフサイクルを総合的に調査した。
その結果、Golangエコシステムの66.10%のモジュールが脆弱性の影響を受けていることがわかった。
タグ付けされていない脆弱性やラベル付けされていない脆弱性の背後にある理由を分析することで、タイムリーリリースとインデクシングのパッチバージョンは、エコシステムのセキュリティを著しく向上させる可能性がある。
論文 参考訳(メタデータ) (2023-12-31T14:53:51Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
信頼性オーグメンテーション(CONVERT)を用いたContrastiVe Graph ClustEringネットワークを提案する。
本手法では,データ拡張を可逆的パーターブ・リカバリネットワークにより処理する。
セマンティクスの信頼性をさらに保証するために、ネットワークを制約する新たなセマンティクス損失が提示される。
論文 参考訳(メタデータ) (2023-08-17T13:07:09Z) - On the Security Blind Spots of Software Composition Analysis [46.1389163921338]
Mavenリポジトリで脆弱性のあるクローンを検出するための新しいアプローチを提案する。
Maven Centralから53万以上の潜在的な脆弱性のあるクローンを検索します。
検出された727個の脆弱なクローンを検出し、それぞれに検証可能な脆弱性証明プロジェクトを合成する。
論文 参考訳(メタデータ) (2023-06-08T20:14:46Z) - Multi-Granularity Detector for Vulnerability Fixes [13.653249890867222]
脆弱性修正のためのMiDa(Multi-Granularity Detector for Vulnerability Fixes)を提案する。
MiDasはコミットレベル、ファイルレベル、ハンクレベル、ラインレベルに対応して、コード変更の粒度ごとに異なるニューラルネットワークを構築する。
MiDasは、現在の最先端のベースラインをAUCで4.9%、JavaとPythonベースのデータセットで13.7%上回っている。
論文 参考訳(メタデータ) (2023-05-23T10:06:28Z) - DRIVE: Dockerfile Rule Mining and Violation Detection [6.510749313511299]
DockerfileはDockerイメージを構築するための一連の命令を定義し、コンテナ化されたアプリケーションをサポートするためにインスタンス化することができる。
最近の研究は、Dockerfileのかなりの品質問題を明らかにしている。
我々は、暗黙のルールをマイニングし、Dockerfileでそのようなルールの潜在的な違反を検出する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-12T01:15:30Z) - FedFA: Federated Learning with Feature Anchors to Align Features and
Classifiers for Heterogeneous Data [8.677832361022809]
フェデレーション学習は、複数のクライアントがデータを交換することなく、協調的にモデルをトレーニングすることを可能にする。
一般的な解決策は、局所訓練中に体重のばらつきや特徴の不整合を規則化する補助的な損失を含む。
我々はFederated Learning with Feature Anchors (FedFA)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-17T02:27:44Z) - Break-It-Fix-It: Unsupervised Learning for Program Repair [90.55497679266442]
我々は2つの重要なアイデアを持つ新しいトレーニング手法であるBreak-It-Fix-It (BIFI)を提案する。
批判者は、実際の悪い入力でフィクスダーの出力をチェックし、トレーニングデータに良い(固定された)出力を追加する。
これらのアイデアに基づいて、よりペア化されたデータを生成するために、ブレーカとフィクスチャを同時に使用しながら、繰り返し更新する。
BIFIは既存のメソッドより優れており、GitHub-Pythonで90.5%、DeepFixで71.7%の修正精度がある。
論文 参考訳(メタデータ) (2021-06-11T20:31:04Z) - D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using
Differential Analysis [55.15995704119158]
静的解析ツールによって報告されたラベル問題に対する差分解析に基づくアプローチであるD2Aを提案する。
D2Aを使用して大きなラベル付きデータセットを生成し、脆弱性識別のためのモデルをトレーニングします。
論文 参考訳(メタデータ) (2021-02-16T07:46:53Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。