Predicting Long-Term Allograft Survival in Liver Transplant Recipients
- URL: http://arxiv.org/abs/2408.05437v1
- Date: Sat, 10 Aug 2024 04:44:36 GMT
- Title: Predicting Long-Term Allograft Survival in Liver Transplant Recipients
- Authors: Xiang Gao, Michael Cooper, Maryam Naghibzadeh, Amirhossein Azhie, Mamatha Bhat, Rahul G. Krishnan,
- Abstract summary: Liver allograft failure occurs in approximately 20% of liver transplant recipients within five years post-transplant.
We introduce the Model for Allograft Survival (MAS), a simple linear risk score that outperforms other advanced survival models.
- Score: 11.680219281917076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Liver allograft failure occurs in approximately 20% of liver transplant recipients within five years post-transplant, leading to mortality or the need for retransplantation. Providing an accurate and interpretable model for individualized risk estimation of graft failure is essential for improving post-transplant care. To this end, we introduce the Model for Allograft Survival (MAS), a simple linear risk score that outperforms other advanced survival models. Using longitudinal patient follow-up data from the United States (U.S.), we develop our models on 82,959 liver transplant recipients and conduct multi-site evaluations on 11 regions. Additionally, by testing on a separate non-U.S. cohort, we explore the out-of-distribution generalization performance of various models without additional fine-tuning, a crucial property for clinical deployment. We find that the most complex models are also the ones most vulnerable to distribution shifts despite achieving the best in-distribution performance. Our findings not only provide a strong risk score for predicting long-term graft failure but also suggest that the routine machine learning pipeline with only in-distribution held-out validation could create harmful consequences for patients at deployment.
Related papers
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer encoder and Cox proportional hazards module for risk prediction.
We demonstrate that SeqRisk performs competitively compared to existing approaches on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-09-19T12:35:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - A Transformer-Based Deep Learning Approach for Fairly Predicting
Post-Liver Transplant Risk Factors [19.00784227522497]
Liver transplantation is a life-saving procedure for patients with end-stage liver disease.
Current scoring system evaluates a patient's mortality risk if not receiving an organ within 90 days.
Post-transplant risk factors, such as cardiovascular disease, chronic rejection, etc., are common complications after transplant.
arXiv Detail & Related papers (2023-04-05T22:54:26Z) - Fairly Predicting Graft Failure in Liver Transplant for Organ Assigning [61.30094367351618]
Liver transplant is an essential therapy performed for severe liver diseases.
Machine learning models could be unfair and trigger bias against certain groups of people.
This work proposes a fair machine learning framework targeting graft failure prediction in liver transplant.
arXiv Detail & Related papers (2023-02-18T18:24:58Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Predicting Kidney Transplant Survival using Multiple Feature
Representations for HLAs [5.081264894734788]
We propose new biologically-relevant feature representations for incorporating HLA information into machine learning-based survival analysis algorithms.
We evaluate our proposed HLA feature representations on a database of over 100,000 transplants and find that they improve prediction accuracy by about 1%.
arXiv Detail & Related papers (2021-03-04T20:22:47Z) - Learning $\mathbf{\mathit{Matching}}$ Representations for Individualized
Organ Transplantation Allocation [98.43063331640538]
We formulate the problem of learning data-driven rules for organ matching using observational data for organ allocations and transplant outcomes.
We propose a model based on representation learning to predict donor-recipient compatibility.
Our model outperforms state-of-art allocation methods and policies executed by human experts.
arXiv Detail & Related papers (2021-01-28T01:33:21Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system.
We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.
arXiv Detail & Related papers (2020-11-02T10:13:59Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Gradient Boosting on Decision Trees for Mortality Prediction in
Transcatheter Aortic Valve Implantation [5.050648346154715]
Current prognostic risk scores in cardiac surgery are based on statistics and do not yet benefit from machine learning.
This research aims to create a machine learning model to predict one-year mortality of a patient after TAVI.
arXiv Detail & Related papers (2020-01-08T10:04:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.