Gradient Boosting on Decision Trees for Mortality Prediction in
Transcatheter Aortic Valve Implantation
- URL: http://arxiv.org/abs/2001.02431v1
- Date: Wed, 8 Jan 2020 10:04:42 GMT
- Title: Gradient Boosting on Decision Trees for Mortality Prediction in
Transcatheter Aortic Valve Implantation
- Authors: Marco Mamprin, Jo M. Zelis, Pim A.L. Tonino, Svitlana Zinger, Peter
H.N. de With
- Abstract summary: Current prognostic risk scores in cardiac surgery are based on statistics and do not yet benefit from machine learning.
This research aims to create a machine learning model to predict one-year mortality of a patient after TAVI.
- Score: 5.050648346154715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current prognostic risk scores in cardiac surgery are based on statistics and
do not yet benefit from machine learning. Statistical predictors are not robust
enough to correctly identify patients who would benefit from Transcatheter
Aortic Valve Implantation (TAVI). This research aims to create a machine
learning model to predict one-year mortality of a patient after TAVI. We adopt
a modern gradient boosting on decision trees algorithm, specifically designed
for categorical features. In combination with a recent technique for model
interpretations, we developed a feature analysis and selection stage, enabling
to identify the most important features for the prediction. We base our
prediction model on the most relevant features, after interpreting and
discussing the feature analysis results with clinical experts. We validated our
model on 270 TAVI cases, reaching an AUC of 0.83. Our approach outperforms
several widespread prognostic risk scores, such as logistic EuroSCORE II, the
STS risk score and the TAVI2-score, which are broadly adopted by cardiologists
worldwide.
Related papers
- Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
This paper comprehends, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data.
The Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability.
arXiv Detail & Related papers (2024-10-16T22:32:19Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
This paper examines the limitations of traditional sepsis screening tools like Systemic Inflammatory Response Syndrome, Modified Early Warning Score, and Quick Sequential Organ Failure Assessment.
We propose using machine learning techniques - Random Forest, Extreme Gradient Boosting, and Decision Tree models - to predict sepsis onset.
Our study evaluates these models individually and in a combined meta-ensemble approach using key metrics such as Accuracy, Precision, Recall, F1 score, and Area Under the Receiver Operating Characteristic Curve.
arXiv Detail & Related papers (2024-07-11T00:51:32Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
This work presents an explainability analysis and evaluation of a prediction model for heart failure survival.
The model employs a data workflow pipeline able to select the best ensemble tree algorithm as well as the best feature selection technique.
The paper's main contribution is an explainability-driven approach to select the best prediction model for HF survival based on an accuracy-explainability balance.
arXiv Detail & Related papers (2021-08-20T09:03:26Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.