A Versatile Framework for Attributed Network Clustering via K-Nearest Neighbor Augmentation
- URL: http://arxiv.org/abs/2408.05459v2
- Date: Sat, 5 Oct 2024 15:22:41 GMT
- Title: A Versatile Framework for Attributed Network Clustering via K-Nearest Neighbor Augmentation
- Authors: Yiran Li, Gongyao Guo, Jieming Shi, Renchi Yang, Shiqi Shen, Qing Li, Jun Luo,
- Abstract summary: We develop ANCKA as a versatile attributed network clustering framework, capable of attributed graph clustering (AGC), attributed multiplex graph clustering (AMGC), and attributed hypergraph clustering (AHC)
We have conducted extensive experiments to compare our methods with 19 competitors on 8 attributed hypergraphs, 16 competitors on 6 attributed graphs, and 16 competitors on 3 attributed multiplex graphs, all demonstrating the superb clustering quality and efficiency of our methods.
- Score: 14.327262299413789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attributed networks containing entity-specific information in node attributes are ubiquitous in modeling social networks, e-commerce, bioinformatics, etc. Their inherent network topology ranges from simple graphs to hypergraphs with high-order interactions and multiplex graphs with separate layers. An important graph mining task is node clustering, aiming to partition the nodes of an attributed network into k disjoint clusters such that intra-cluster nodes are closely connected and share similar attributes, while inter-cluster nodes are far apart and dissimilar. It is highly challenging to capture multi-hop connections via nodes or attributes for effective clustering on multiple types of attributed networks. In this paper, we first present AHCKA as an efficient approach to attributed hypergraph clustering (AHC). AHCKA includes a carefully-crafted K-nearest neighbor augmentation strategy for the optimized exploitation of attribute information on hypergraphs, a joint hypergraph random walk model to devise an effective AHC objective, and an efficient solver with speedup techniques for the objective optimization. The proposed techniques are extensible to various types of attributed networks, and thus, we develop ANCKA as a versatile attributed network clustering framework, capable of attributed graph clustering (AGC), attributed multiplex graph clustering (AMGC), and AHC. Moreover, we devise ANCKA with algorithmic designs tailored for GPU acceleration to boost efficiency. We have conducted extensive experiments to compare our methods with 19 competitors on 8 attributed hypergraphs, 16 competitors on 6 attributed graphs, and 16 competitors on 3 attributed multiplex graphs, all demonstrating the superb clustering quality and efficiency of our methods.
Related papers
- Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Multilayer Graph Contrastive Clustering Network [14.864683908759327]
We propose a generic and effective autoencoder framework for multilayer graph clustering named Multilayer Graph Contrastive Clustering Network (MGCCN)
MGCCN consists of three modules: (1)Attention mechanism is applied to better capture the relevance between nodes and neighbors for better node embeddings; (2) To better explore the consistent information in different networks, a contrastive fusion strategy is introduced; and (3)MGCCN employs a self-supervised component that iteratively strengthens the node embedding and clustering.
arXiv Detail & Related papers (2021-12-28T07:21:13Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Variational Co-embedding Learning for Attributed Network Clustering [30.7006907516984]
Recent works for attributed network clustering utilize graph convolution to obtain node embeddings and simultaneously perform clustering assignments on the embedding space.
We propose a variational co-embedding learning model for attributed network clustering (ANC)
ANC is composed of dual variational auto-encoders to simultaneously embed nodes and attributes.
arXiv Detail & Related papers (2021-04-15T08:11:47Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.