Multilayer Graph Contrastive Clustering Network
- URL: http://arxiv.org/abs/2112.14021v1
- Date: Tue, 28 Dec 2021 07:21:13 GMT
- Title: Multilayer Graph Contrastive Clustering Network
- Authors: Liang Liu, Zhao Kang, Ling Tian, Wenbo Xu, Xixu He
- Abstract summary: We propose a generic and effective autoencoder framework for multilayer graph clustering named Multilayer Graph Contrastive Clustering Network (MGCCN)
MGCCN consists of three modules: (1)Attention mechanism is applied to better capture the relevance between nodes and neighbors for better node embeddings; (2) To better explore the consistent information in different networks, a contrastive fusion strategy is introduced; and (3)MGCCN employs a self-supervised component that iteratively strengthens the node embedding and clustering.
- Score: 14.864683908759327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilayer graph has garnered plenty of research attention in many areas due
to their high utility in modeling interdependent systems. However, clustering
of multilayer graph, which aims at dividing the graph nodes into categories or
communities, is still at a nascent stage. Existing methods are often limited to
exploiting the multiview attributes or multiple networks and ignoring more
complex and richer network frameworks. To this end, we propose a generic and
effective autoencoder framework for multilayer graph clustering named
Multilayer Graph Contrastive Clustering Network (MGCCN). MGCCN consists of
three modules: (1)Attention mechanism is applied to better capture the
relevance between nodes and neighbors for better node embeddings. (2)To better
explore the consistent information in different networks, a contrastive fusion
strategy is introduced. (3)MGCCN employs a self-supervised component that
iteratively strengthens the node embedding and clustering. Extensive
experiments on different types of real-world graph data indicate that our
proposed method outperforms state-of-the-art techniques.
Related papers
- DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
We propose a novel method, DGCluster, which primarily optimize the modularity objective using graph neural networks and scales linearly with the graph size.
We extensively test DGCluster on several real-world datasets of varying sizes, across multiple popular cluster quality metrics.
Our approach consistently outperforms the state-of-the-art methods, demonstrating significant performance gains in almost all settings.
arXiv Detail & Related papers (2023-12-20T01:43:55Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
We propose a framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS)
MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network.
The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-09T21:48:36Z) - Dual Information Enhanced Multi-view Attributed Graph Clustering [11.624319530337038]
A novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper.
The proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views.
The Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure.
arXiv Detail & Related papers (2022-11-28T01:18:04Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
This paper presents a new deep clustering approach termed image clustering with contrastive learning and multi-scale graph convolutional networks (IcicleGCN)
Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.
arXiv Detail & Related papers (2022-07-14T19:16:56Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Semi-Supervised Deep Learning for Multiplex Networks [20.671777884219555]
Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations.
We present a novel semi-supervised approach for structure-aware representation learning on multiplex networks.
arXiv Detail & Related papers (2021-10-05T13:37:43Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.