A Structural Feature-Based Approach for Comprehensive Graph Classification
- URL: http://arxiv.org/abs/2408.05474v1
- Date: Sat, 10 Aug 2024 07:59:43 GMT
- Title: A Structural Feature-Based Approach for Comprehensive Graph Classification
- Authors: Saiful Islam, Md. Nahid Hasan, Pitambar Khanra,
- Abstract summary: We propose a method that constructs feature vectors based on fundamental graph structural properties.
We demonstrate that these features, despite their simplicity, are powerful enough to capture the intrinsic characteristics of graphs within the same class.
A key advantage of our approach is its simplicity, which makes it accessible and adaptable to a broad range of applications.
- Score: 1.5020330976600735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing prevalence of graph-structured data across various domains has intensified greater interest in graph classification tasks. While numerous sophisticated graph learning methods have emerged, their complexity often hinders practical implementation. In this article, we address this challenge by proposing a method that constructs feature vectors based on fundamental graph structural properties. We demonstrate that these features, despite their simplicity, are powerful enough to capture the intrinsic characteristics of graphs within the same class. We explore the efficacy of our approach using three distinct machine learning methods, highlighting how our feature-based classification leverages the inherent structural similarities of graphs within the same class to achieve accurate classification. A key advantage of our approach is its simplicity, which makes it accessible and adaptable to a broad range of applications, including social network analysis, bioinformatics, and cybersecurity. Furthermore, we conduct extensive experiments to validate the performance of our method, showing that it not only reveals a competitive performance but in some cases surpasses the accuracy of more complex, state-of-the-art techniques. Our findings suggest that a focus on fundamental graph features can provide a robust and efficient alternative for graph classification, offering significant potential for both research and practical applications.
Related papers
- TopER: Topological Embeddings in Graph Representation Learning [8.052380377159398]
Topological Evolution Rate (TopER) is a low-dimensional embedding approach grounded in topological data analysis.
TopER simplifies a key topological approach, Persistent Homology, by calculating the evolution rate of graph substructures.
Our models achieve or surpass state-of-the-art results across molecular, biological, and social network datasets in tasks such as classification, clustering, and visualization.
arXiv Detail & Related papers (2024-10-02T17:31:33Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Core Knowledge Learning Framework for Graph Adaptation and Scalability Learning [7.239264041183283]
Graph classification faces several hurdles, including adapting to diverse prediction tasks, training across multiple target domains, and handling small-sample prediction scenarios.
By incorporating insights from various types of tasks, our method aims to enhance adaptability, scalability, and generalizability in graph classification.
Experimental results demonstrate significant performance enhancements achieved by our method compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-07-02T02:16:43Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Structure-Enhanced Meta-Learning For Few-Shot Graph Classification [53.54066611743269]
This work explores the potential of metric-based meta-learning for solving few-shot graph classification.
An implementation upon GIN, named SMFGIN, is tested on two datasets, Chembl and TRIANGLES.
arXiv Detail & Related papers (2021-03-05T09:03:03Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Goal-directed graph construction using reinforcement learning [3.291429094499946]
We formulate the construction of a graph as a decision-making process in which a central agent creates topologies by trial and error.
We propose an algorithm based on reinforcement learning and graph neural networks to learn graph construction and improvement strategies.
arXiv Detail & Related papers (2020-01-30T12:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.