Non-Negative Reduced Biquaternion Matrix Factorization with Applications in Color Face Recognition
- URL: http://arxiv.org/abs/2408.05582v1
- Date: Sat, 10 Aug 2024 15:25:42 GMT
- Title: Non-Negative Reduced Biquaternion Matrix Factorization with Applications in Color Face Recognition
- Authors: Jifei Miao, Junjun Pan, Michael K. Ng,
- Abstract summary: We introduce a concept of the non-negative RB matrix and then use the multiplication properties of RB to propose a non-negative RB matrix factorization model.
We validate the effectiveness and superiority of the proposed NRBMF model in color face recognition.
- Score: 27.149638378672755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reduced biquaternion (RB), as a four-dimensional algebra highly suitable for representing color pixels, has recently garnered significant attention from numerous scholars. In this paper, for color image processing problems, we introduce a concept of the non-negative RB matrix and then use the multiplication properties of RB to propose a non-negative RB matrix factorization (NRBMF) model. The NRBMF model is introduced to address the challenge of reasonably establishing a non-negative quaternion matrix factorization model, which is primarily hindered by the multiplication properties of traditional quaternions. Furthermore, this paper transforms the problem of solving the NRBMF model into an RB alternating non-negative least squares (RB-ANNLS) problem. Then, by introducing a method to compute the gradient of the real function with RB matrix variables, we solve the RB-ANNLS optimization problem using the RB projected gradient algorithm and conduct a convergence analysis of the algorithm. Finally, we validate the effectiveness and superiority of the proposed NRBMF model in color face recognition.
Related papers
- ERD: Exponential Retinex decomposition based on weak space and hybrid nonconvex regularization and its denoising application [3.9304843171575112]
The Retinex theory models the image as a segmentation of illumination and noise components.
We propose an exponential decomposition algorithm for image denoising.
arXiv Detail & Related papers (2024-07-11T13:34:37Z) - Input Guided Multiple Deconstruction Single Reconstruction neural network models for Matrix Factorization [0.0]
This paper develops two models based on the concept of Non-negative Matrix Factorization (NMF)
They aim to deal with high-dimensional data by discovering its low rank approximation by determining a unique pair of factor matrices.
The superiority of low dimensional embedding over that of the original data justifying the need for dimension reduction has been established.
arXiv Detail & Related papers (2024-05-22T08:41:32Z) - Ray-driven Spectral CT Reconstruction Based on Neural Base-Material Fields [10.684377265644045]
In spectral CT reconstruction, the basis materials decomposition involves solving a large-scale nonlinear system of integral equations.
This paper proposes a model that parameterizes the attenuation coefficients of the object using a neural field representation.
It introduces a lightweight discretization method for line integrals based on a ray-driven neural field.
arXiv Detail & Related papers (2024-04-10T13:10:52Z) - Large-scale gradient-based training of Mixtures of Factor Analyzers [67.21722742907981]
This article contributes both a theoretical analysis as well as a new method for efficient high-dimensional training by gradient descent.
We prove that MFA training and inference/sampling can be performed based on precision matrices, which does not require matrix inversions after training is completed.
Besides the theoretical analysis and matrices, we apply MFA to typical image datasets such as SVHN and MNIST, and demonstrate the ability to perform sample generation and outlier detection.
arXiv Detail & Related papers (2023-08-26T06:12:33Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
We design algorithms for Robust Component Analysis (A)
It consists in decomposing a matrix into the sum of a low Principaled matrix and a sparse Principaled matrix.
arXiv Detail & Related papers (2023-07-12T03:48:26Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
We present the first framework to solve linear inverse problems leveraging pre-trained latent diffusion models.
We theoretically analyze our algorithm showing provable sample recovery in a linear model setting.
arXiv Detail & Related papers (2023-07-02T17:21:30Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Quasi Non-Negative Quaternion Matrix Factorization with Application to
Color Face Recognition [0.0]
A novel quasi-negative quaternion matrix factorization (QNQMF) is presented for color image processing.
The accuracy of the rate of face recognition on the quaternion model is better than on the red, green and blue channels of color image.
arXiv Detail & Related papers (2022-11-30T04:51:09Z) - Quaternion Optimized Model with Sparse Regularization for Color Image
Recovery [10.137095668835439]
This paper is inspired by an appreciation of the fact that different signal types, including audio formats and images, possess structures that are inherently sparse in respect of their respective bases.
Since color images can be processed as a whole in the quaternion domain, we depicted the sparsity of the color image in the quaternion discrete cosine transform (QDCT) domain.
To achieve a more superior low-rank approximation, the quatenrion-based truncated nuclear norm (QTNN) is employed in the proposed model.
arXiv Detail & Related papers (2022-04-19T03:07:12Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
We show that PSDMF algorithms can be designed based on phase retrieval (PR) and affine rank minimization (ARM) algorithms.
Motivated by this idea, we introduce a new family of PSDMF algorithms based on iterative hard thresholding (IHT)
arXiv Detail & Related papers (2020-07-24T06:10:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.