Ray-driven Spectral CT Reconstruction Based on Neural Base-Material Fields
- URL: http://arxiv.org/abs/2404.06991v1
- Date: Wed, 10 Apr 2024 13:10:52 GMT
- Title: Ray-driven Spectral CT Reconstruction Based on Neural Base-Material Fields
- Authors: Ligen Shi, Chang Liu, Ping Yang, Jun Qiu, Xing Zhao,
- Abstract summary: In spectral CT reconstruction, the basis materials decomposition involves solving a large-scale nonlinear system of integral equations.
This paper proposes a model that parameterizes the attenuation coefficients of the object using a neural field representation.
It introduces a lightweight discretization method for line integrals based on a ray-driven neural field.
- Score: 10.684377265644045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In spectral CT reconstruction, the basis materials decomposition involves solving a large-scale nonlinear system of integral equations, which is highly ill-posed mathematically. This paper proposes a model that parameterizes the attenuation coefficients of the object using a neural field representation, thereby avoiding the complex calculations of pixel-driven projection coefficient matrices during the discretization process of line integrals. It introduces a lightweight discretization method for line integrals based on a ray-driven neural field, enhancing the accuracy of the integral approximation during the discretization process. The basis materials are represented as continuous vector-valued implicit functions to establish a neural field parameterization model for the basis materials. The auto-differentiation framework of deep learning is then used to solve the implicit continuous function of the neural base-material fields. This method is not limited by the spatial resolution of reconstructed images, and the network has compact and regular properties. Experimental validation shows that our method performs exceptionally well in addressing the spectral CT reconstruction. Additionally, it fulfils the requirements for the generation of high-resolution reconstruction images.
Related papers
- A Structure-Preserving Kernel Method for Learning Hamiltonian Systems [3.594638299627404]
A structure-preserving kernel ridge regression method is presented that allows the recovery of potentially high-dimensional and nonlinear Hamiltonian functions.
The paper extends kernel regression methods to problems in which loss functions involving linear functions of gradients are required.
A full error analysis is conducted that provides convergence rates using fixed and adaptive regularization parameters.
arXiv Detail & Related papers (2024-03-15T07:20:21Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Parametric Level-sets Enhanced To Improve Reconstruction (PaLEnTIR) [0.0]
We introduce PaLEnTIR, a significantly enhanced parametric level-set (PaLS) method addressing the restoration and reconstruction of piecewise constant objects.
Our key contribution involves a unique PaLS formulation utilizing a single level-set function to restore scenes containing multi-contrast piecewise-constant objects.
arXiv Detail & Related papers (2022-04-21T00:03:44Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Investigation of Nonlinear Model Order Reduction of the Quasigeostrophic
Equations through a Physics-Informed Convolutional Autoencoder [0.0]
Reduced order modeling (ROM) approximates complex physics-based models of real-world processes by inexpensive surrogates.
In this paper we explore the construction of ROM using autoencoders (AE) that perform nonlinear projections of the system dynamics onto a low dimensional manifold.
Our investigation using the quasi-geostrophic equations reveals that while the PI cost function helps with spatial reconstruction, spatial features are less powerful than spectral features.
arXiv Detail & Related papers (2021-08-27T15:20:01Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Learned convex regularizers for inverse problems [3.294199808987679]
We propose to learn a data-adaptive input- neural network (ICNN) as a regularizer for inverse problems.
We prove the existence of a sub-gradient-based algorithm that leads to a monotonically decreasing error in the parameter space with iterations.
We show that the proposed convex regularizer is at least competitive with and sometimes superior to state-of-the-art data-driven techniques for inverse problems.
arXiv Detail & Related papers (2020-08-06T18:58:35Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.