A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations
- URL: http://arxiv.org/abs/2408.05620v1
- Date: Sat, 10 Aug 2024 19:34:03 GMT
- Title: A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations
- Authors: Lorenc Kapllani, Long Teng,
- Abstract summary: We present a novel forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward differential equations (BSDEs)
Motivated by the fact that differential deep learning can efficiently approximate the labels and their derivatives with respect to inputs, we transform the BSDE problem into a differential deep learning problem.
The main idea of our algorithm is to discretize the integrals using the Euler-Maruyama method and approximate the unknown discrete solution triple using three deep neural networks.
- Score: 0.6040014326756179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a novel forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations (BSDEs). Motivated by the fact that differential deep learning can efficiently approximate the labels and their derivatives with respect to inputs, we transform the BSDE problem into a differential deep learning problem. This is done by leveraging Malliavin calculus, resulting in a system of BSDEs. The unknown solution of the BSDE system is a triple of processes $(Y, Z, \Gamma)$, representing the solution, its gradient, and the Hessian matrix. The main idea of our algorithm is to discretize the integrals using the Euler-Maruyama method and approximate the unknown discrete solution triple using three deep neural networks. The parameters of these networks are then optimized by globally minimizing a differential learning loss function, which is novelty defined as a weighted sum of the dynamics of the discretized system of BSDEs. Through various high-dimensional examples, we demonstrate that our proposed scheme is more efficient in terms of accuracy and computation time compared to other contemporary forward deep learning-based methodologies.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
We propose a novel backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward differential equations.
The deep neural network (DNN) models are trained not only on the inputs and labels but also the differentials of the corresponding labels.
arXiv Detail & Related papers (2024-04-12T13:05:35Z) - Deep learning numerical methods for high-dimensional fully nonlinear
PIDEs and coupled FBSDEs with jumps [26.28912742740653]
We propose a deep learning algorithm for solving high-dimensional parabolic integro-differential equations (PIDEs)
The jump-diffusion process are derived by a Brownian motion and an independent compensated Poisson random measure.
To derive the error estimates for this deep learning algorithm, the convergence of Markovian, the error bound of Euler time discretization, and the simulation error of deep learning algorithm are investigated.
arXiv Detail & Related papers (2023-01-30T13:55:42Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - A Deep Gradient Correction Method for Iteratively Solving Linear Systems [5.744903762364991]
We present a novel approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations.
Our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations.
arXiv Detail & Related papers (2022-05-22T06:40:38Z) - A deep branching solver for fully nonlinear partial differential
equations [0.1474723404975345]
We present a multidimensional deep learning implementation of a branching algorithm for the numerical solution of fully nonlinear PDEs.
This approach is designed to tackle functional nonlinearities involving gradient terms of any orders.
arXiv Detail & Related papers (2022-03-07T09:46:46Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Deep learning algorithms for solving high dimensional nonlinear backward
stochastic differential equations [1.8655840060559168]
We propose a new deep learning-based scheme for solving high dimensional nonlinear backward differential equations (BSDEs)
We approximate the unknown solution of a BSDE using a deep neural network and its gradient with automatic differentiation.
In order to demonstrate performances of our algorithm, several nonlinear BSDEs including pricing problems in finance are provided.
arXiv Detail & Related papers (2020-10-03T10:18:58Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.