論文の概要: Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion
- arxiv url: http://arxiv.org/abs/2408.05636v1
- Date: Sat, 10 Aug 2024 21:24:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 18:01:49.076871
- Title: Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion
- Title(参考訳): 投機的拡散復号:拡散による言語生成の高速化
- Authors: Jacob K Christopher, Brian R Bartoldson, Bhavya Kailkhura, Ferdinando Fioretto,
- Abstract要約: 投機的復号化は,モデル出力の品質を犠牲にすることなく,大規模言語モデル推論を高速化する手法として広く採用されている。
本稿では,離散拡散モデルを用いてドラフトシーケンスを生成する投機的復号法を提案する。
提案手法であるtextitSpeculative Diffusion Decoding (SpecDiff) は、標準言語生成ベンチマークで検証され、標準生成プロセスの8.7倍の高速化と既存の投機的デコードアプローチの2.5倍の高速化を提供する。
- 参考スコア(独自算出の注目度): 59.17158389902231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speculative decoding has emerged as a widely adopted method to accelerate large language model inference without sacrificing the quality of the model outputs. While this technique has facilitated notable speed improvements by enabling parallel sequence verification, its efficiency remains inherently limited by the reliance on incremental token generation in existing draft models. To overcome this limitation, this paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences. This allows parallelization of both the drafting and verification steps, providing significant speed-ups to the inference process. Our proposed approach, \textit{Speculative Diffusion Decoding (SpecDiff)}, is validated on standard language generation benchmarks and empirically demonstrated to provide a \textbf{up to 8.7x speed-up over standard generation processes and up to 2.5x speed-up over existing speculative decoding approaches.}
- Abstract(参考訳): 投機的復号化は,モデル出力の品質を犠牲にすることなく,大規模言語モデル推論を高速化する手法として広く採用されている。
この技術は並列シーケンス検証を可能にすることで顕著な速度向上を実現しているが、既存のドラフトモデルにおけるインクリメンタルトークン生成に依存しているため、その効率は本質的に制限されている。
この制限を克服するために、離散拡散モデルを用いてドラフトシーケンスを生成する投機的復号法を提案する。
これにより、ドラフトと検証の両方のステップの並列化が可能になり、推論プロセスに対する大幅なスピードアップが実現される。
提案手法である \textit{Speculative Diffusion Decoding (SpecDiff)} は、標準言語生成ベンチマークで検証され、標準生成プロセスの最大8.7倍の速度アップと既存の投機的デコードアプローチの最大2.5倍のスピードアップを提供することを実証的に実証した。
※
関連論文リスト
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding [2.642212767247493]
適応的なN-gram並列デコーディング(ANPD)を導入し,複数のトークンを同時に生成することで推論を高速化する。
ANPDは、処理速度を向上しながら、元の出力の完全性を維持する。
実験では、LLaMAのようなモデルとその微調整されたモデルが3.67倍の速度向上を示した。
論文 参考訳(メタデータ) (2024-04-10T16:11:09Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [63.77614880533488]
本稿では,デコーダ内の複数の推論経路をマージする並列デコードシーケンス・ツー・シーケンス・ビジョン言語モデルを提案する。
このモデルは最先端の自己回帰モデルと同等のパフォーマンスを実現するが、推論時間では高速である。
論文 参考訳(メタデータ) (2024-03-04T17:34:59Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - Speculative Streaming: Fast LLM Inference without Auxiliary Models [21.454206732725563]
投機的ストリーミング(英: Speculative Streaming)は、単一モデル投機的復号法である。
これは、次のトークン予測から将来のn-gram予測に微調整対象を変更することで、ターゲットモデルにドラフトを融合させる。
1.8から3.1Xのデコーディングを、多様なタスクセットで高速化する。
論文 参考訳(メタデータ) (2024-02-16T23:36:43Z) - SPEED: Speculative Pipelined Execution for Efficient Decoding [35.45955948053644]
本稿では,現在のトークンと並行して複数の将来トークンを投機的に実行することで,推論効率を向上させるSPEEDを提案する。
パラメータ共有を使用するTransformerデコーダでは、並列に実行されるトークンのメモリ操作を償却することができる。
モデル精度に対する遅延低減の観点から,本手法の有効性を実証し,パラメータ共有によるより深いデコーダのトレーニングを最小限のランタイムオーバーヘッドで行う方法を示した。
論文 参考訳(メタデータ) (2023-10-18T16:07:01Z) - Fast and Robust Early-Exiting Framework for Autoregressive Language
Models with Synchronized Parallel Decoding [43.659680579686544]
本稿では,浅層深度モジュールと並列デコーディングを併用したFast and Robust Early-Exitingフレームワークを提案する。
我々のフレームワークは、既存のトークンの復号処理を、以前に積み重ねられた早期発行トークンと同期させることで、より高速な推論を可能にする。
並列デコーディングにより,浅層モデルと深部モデルの両方からの予測を観測できるので,新しい適応しきい値推定器を提案する。
論文 参考訳(メタデータ) (2023-10-09T05:53:05Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Speculative Decoding: Exploiting Speculative Execution for Accelerating
Seq2seq Generation [80.2267931231335]
本稿では,自己回帰(AR)デコーディングを高速化する投機的実行のアイデアを活用するための投機的デコーディング(SpecDec)を提案する。
SpecDecには2つのイノベーションがある。Spec-Drafter - 効率的なドラフトのために特別に最適化された独立モデル、Spec-Verification - ドラフトされたトークンを効率的に検証するための信頼性の高い方法である。
論文 参考訳(メタデータ) (2022-03-30T17:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。