Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion
- URL: http://arxiv.org/abs/2408.05636v2
- Date: Fri, 16 Aug 2024 19:25:46 GMT
- Title: Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion
- Authors: Jacob K Christopher, Brian R Bartoldson, Bhavya Kailkhura, Ferdinando Fioretto,
- Abstract summary: Speculative decoding has emerged as a widely adopted method to accelerate large language model inference.
This paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences.
- Score: 59.17158389902231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speculative decoding has emerged as a widely adopted method to accelerate large language model inference without sacrificing the quality of the model outputs. While this technique has facilitated notable speed improvements by enabling parallel sequence verification, its efficiency remains inherently limited by the reliance on incremental token generation in existing draft models. To overcome this limitation, this paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences. This allows parallelization of both the drafting and verification steps, providing significant speed-ups to the inference process. Our proposed approach, Speculative Diffusion Decoding (SpecDiff), is validated on standard language generation benchmarks and empirically demonstrated to provide a up to 8.7x speed-up over standard generation processes and up to 2.5x speed-up over existing speculative decoding approaches.
Related papers
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding [2.642212767247493]
We introduce Adaptive N-gram Parallel Decoding (ANPD), which accelerates inference by allowing the simultaneous generation of multiple tokens.
ANPD preserves the integrity of the original output while enhancing processing speed.
In experiments, models such as LLaMA and its fine-tuned variants have shown speed improvements up to 3.67x.
arXiv Detail & Related papers (2024-04-10T16:11:09Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [63.77614880533488]
We propose a parallel decoding sequence-to-sequence vision-language model that marginalizes over multiple inference paths in the decoder.
The model achieves performance on-par with its state-of-the-art autoregressive counterpart, but is faster at inference time.
arXiv Detail & Related papers (2024-03-04T17:34:59Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
We propose a novel framework specifically designed for speculative sampling.
Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words.
We demonstrate impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach.
arXiv Detail & Related papers (2024-02-24T08:10:39Z) - Speculative Streaming: Fast LLM Inference without Auxiliary Models [21.454206732725563]
Speculative Streaming is a single-model speculative decoding method.
It fuses drafting into the target model by changing the fine-tuning objective from next token prediction to future n-gram prediction.
It speeds up decoding by 1.8 - 3.1X in a diverse set of tasks.
arXiv Detail & Related papers (2024-02-16T23:36:43Z) - SPEED: Speculative Pipelined Execution for Efficient Decoding [35.45955948053644]
We propose SPEED, which improves inference efficiency by speculatively executing multiple future tokens in parallel with the current token.
For Transformer decoders that employ parameter sharing, the memory operations for the tokens executing in parallel can be amortized.
We demonstrate the efficiency of our method in terms of latency reduction relative to model accuracy and demonstrate how speculation allows for training deeper decoders with parameter sharing with minimal runtime overhead.
arXiv Detail & Related papers (2023-10-18T16:07:01Z) - Fast and Robust Early-Exiting Framework for Autoregressive Language
Models with Synchronized Parallel Decoding [43.659680579686544]
We propose a Fast and Robust Early-Exiting framework, which incorporates a shallow-deep module and a synchronized parallel decoding.
Our framework enables faster inference by synchronizing the decoding process of the current token with previously stacked early-exited tokens.
As parallel decoding allows us to observe predictions from both shallow and deep models, we present a novel adaptive threshold estimator.
arXiv Detail & Related papers (2023-10-09T05:53:05Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Speculative Decoding: Exploiting Speculative Execution for Accelerating
Seq2seq Generation [80.2267931231335]
We propose Speculative Decoding (SpecDec) to study exploiting the idea of speculative execution to accelerate autoregressive (AR) decoding.
SpecDec has two innovations: Spec-Drafter -- an independent model specially optimized for efficient drafting, and Spec-Verification -- a reliable method for verifying the drafted tokens efficiently.
arXiv Detail & Related papers (2022-03-30T17:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.