Single Image Dehazing Using Scene Depth Ordering
- URL: http://arxiv.org/abs/2408.05683v1
- Date: Sun, 11 Aug 2024 03:29:27 GMT
- Title: Single Image Dehazing Using Scene Depth Ordering
- Authors: Pengyang Ling, Huaian Chen, Xiao Tan, Yimeng Shan, Yi Jin,
- Abstract summary: We propose a depth order guided single image dehazing method, which utilizes depth order in hazy images to guide the dehazing process.
The proposed method can better recover potential structure and vivid color with higher computational efficiency than the state-of-the-art dehazing methods.
- Score: 15.929908168136823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Images captured in hazy weather generally suffer from quality degradation, and many dehazing methods have been developed to solve this problem. However, single image dehazing problem is still challenging due to its ill-posed nature. In this paper, we propose a depth order guided single image dehazing method, which utilizes depth order in hazy images to guide the dehazing process to achieve a similar depth perception in corresponding dehazing results. The consistency of depth perception ensures that the regions that look farther or closer in hazy images also appear farther or closer in the corresponding dehazing results, and thus effectively avoid the undesired visual effects. To achieve this goal, a simple yet effective strategy is proposed to extract the depth order in hazy images, which offers a reference for depth perception in hazy weather. Additionally, a depth order embedded transformation model is devised, which performs transmission estimation under the guidance of depth order to realize an unchanged depth order in the dehazing results. The extracted depth order provides a powerful global constraint for the dehazing process, which contributes to the efficient utilization of global information, thereby bringing an overall improvement in restoration quality. Extensive experiments demonstrate that the proposed method can better recover potential structure and vivid color with higher computational efficiency than the state-of-the-art dehazing methods.
Related papers
- DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm [3.649619954898362]
Detail Recovery And Contrastive DehazeNet is a detailed image recovery network that tailors enhancements to specific dehazed scene contexts.
A major innovation is its ability to train effectively with limited data, achieved through a novel quadruplet loss-based contrastive dehazing paradigm.
arXiv Detail & Related papers (2024-10-18T16:48:31Z) - Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing [9.195173526948123]
We propose a dual-task collaborative mutual promotion framework to achieve the dehazing of a single image.
This framework integrates depth estimation and dehazing by a dual-task interaction mechanism.
We show that the proposed method can achieve better performance than that of the state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-02T06:29:44Z) - SelfPromer: Self-Prompt Dehazing Transformers with Depth-Consistency [51.92434113232977]
This work presents an effective depth-consistency self-prompt Transformer for image dehazing.
It is motivated by an observation that the estimated depths of an image with haze residuals and its clear counterpart vary.
By incorporating the prompt, prompt embedding, and prompt attention into an encoder-decoder network based on VQGAN, we can achieve better perception quality.
arXiv Detail & Related papers (2023-03-13T11:47:24Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - End-to-end Learning for Joint Depth and Image Reconstruction from
Diffracted Rotation [10.896567381206715]
We propose a novel end-to-end learning approach for depth from diffracted rotation.
Our approach requires a significantly less complex model and less training data, yet it is superior to existing methods in the task of monocular depth estimation.
arXiv Detail & Related papers (2022-04-14T16:14:37Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z) - Robust Consistent Video Depth Estimation [65.53308117778361]
We present an algorithm for estimating consistent dense depth maps and camera poses from a monocular video.
Our algorithm combines two complementary techniques: (1) flexible deformation-splines for low-frequency large-scale alignment and (2) geometry-aware depth filtering for high-frequency alignment of fine depth details.
In contrast to prior approaches, our method does not require camera poses as input and achieves robust reconstruction for challenging hand-held cell phone captures containing a significant amount of noise, shake, motion blur, and rolling shutter deformations.
arXiv Detail & Related papers (2020-12-10T18:59:48Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
We propose a fully end-to-end Generative Adversarial Networks with Fusion-discriminator (FD-GAN) for image dehazing.
Our model can generator more natural and realistic dehazed images with less color distortion and fewer artifacts.
Experiments have shown that our method reaches state-of-the-art performance on both public synthetic datasets and real-world images.
arXiv Detail & Related papers (2020-01-20T04:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.