Layer Decomposition and Morphological Reconstruction for Task-Oriented Infrared Image Enhancement
- URL: http://arxiv.org/abs/2506.23353v1
- Date: Sun, 29 Jun 2025 18:10:05 GMT
- Title: Layer Decomposition and Morphological Reconstruction for Task-Oriented Infrared Image Enhancement
- Authors: Siyuan Chai, Xiaodong Guo, Tong Liu,
- Abstract summary: Infrared image helps improve the perception capabilities of autonomous driving in complex weather conditions such as fog, rain, and low light.<n>However, infrared image often suffers from low contrast, especially in non-heat-emitting targets like bicycles.<n>We propose a task-oriented infrared image enhancement method to achieve contrast enhancement without amplifying noise and losing important information.
- Score: 4.06181861004177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared image helps improve the perception capabilities of autonomous driving in complex weather conditions such as fog, rain, and low light. However, infrared image often suffers from low contrast, especially in non-heat-emitting targets like bicycles, which significantly affects the performance of downstream high-level vision tasks. Furthermore, achieving contrast enhancement without amplifying noise and losing important information remains a challenge. To address these challenges, we propose a task-oriented infrared image enhancement method. Our approach consists of two key components: layer decomposition and saliency information extraction. First, we design an layer decomposition method for infrared images, which enhances scene details while preserving dark region features, providing more features for subsequent saliency information extraction. Then, we propose a morphological reconstruction-based saliency extraction method that effectively extracts and enhances target information without amplifying noise. Our method improves the image quality for object detection and semantic segmentation tasks. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods.
Related papers
- DFVO: Learning Darkness-free Visible and Infrared Image Disentanglement and Fusion All at Once [57.15043822199561]
A Darkness-Free network is proposed to handle Visible and infrared image disentanglement and fusion all at Once (DFVO)<n>DFVO employs a cascaded multi-task approach to replace the traditional two-stage cascaded training (enhancement and fusion)<n>Our proposed approach outperforms state-of-the-art alternatives in terms of qualitative and quantitative evaluations.
arXiv Detail & Related papers (2025-05-07T15:59:45Z) - Nonlocal Retinex-Based Variational Model and its Deep Unfolding Twin for Low-Light Image Enhancement [3.174882428337821]
We propose a variational method for low-light image enhancement based on the Retinex decomposition.<n>A color correction pre-processing step is applied to the low-light image, which is then used as the observed input in the decomposition.<n>We extend the model by introducing its deep unfolding counterpart, in which the operators are replaced with learnable networks.
arXiv Detail & Related papers (2025-04-10T14:48:26Z) - DifIISR: A Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution [32.53713932204663]
DifIISR is an infrared image super-resolution diffusion model optimized for visual quality and perceptual performance.<n>We introduce an infrared thermal spectrum distribution regulation to preserve visual fidelity.<n>We incorporate various visual foundational models as the perceptual guidance for downstream visual tasks.
arXiv Detail & Related papers (2025-03-03T05:20:57Z) - ExpRDiff: Short-exposure Guided Diffusion Model for Realistic Local Motion Deblurring [61.82010103478833]
We develop a context-based local blur detection module that incorporates additional contextual information to improve the identification of blurry regions.<n>Considering that modern smartphones are equipped with cameras capable of providing short-exposure images, we develop a blur-aware guided image restoration method.<n>We formulate the above components into a simple yet effective network, named ExpRDiff.
arXiv Detail & Related papers (2024-12-12T11:42:39Z) - Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - Decomposition-based and Interference Perception for Infrared and Visible
Image Fusion in Complex Scenes [4.919706769234434]
We propose a decomposition-based and interference perception image fusion method.
We classify the pixels of visible image from the degree of scattering of light transmission, based on which we then separate the detail and energy information of the image.
This refined decomposition facilitates the proposed model in identifying more interfering pixels that are in complex scenes.
arXiv Detail & Related papers (2024-02-03T09:27:33Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
Previous arts mainly focus on the low-light images captured in the visible spectrum using pixel-wise loss.
We propose a novel approach to increase the visibility of images captured under low-light environments by removing the in-camera infrared (IR) cut-off filter.
arXiv Detail & Related papers (2023-07-09T08:29:19Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion [68.78897015832113]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.<n>Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.