論文の概要: A Novel Momentum-Based Deep Learning Techniques for Medical Image Classification and Segmentation
- arxiv url: http://arxiv.org/abs/2408.05692v1
- Date: Sun, 11 Aug 2024 04:12:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 16:07:35.519309
- Title: A Novel Momentum-Based Deep Learning Techniques for Medical Image Classification and Segmentation
- Title(参考訳): 医用画像分類とセグメンテーションのためのモメンタムに基づく新しい深層学習手法
- Authors: Koushik Biswas, Ridal Pal, Shaswat Patel, Debesh Jha, Meghana Karri, Amit Reza, Gorkem Durak, Alpay Medetalibeyoglu, Matthew Antalek, Yury Velichko, Daniela Ladner, Amir Borhani, Ulas Bagci,
- Abstract要約: 医療画像から臓器を正確に分割することは、コンピュータによる診断と介入計画にとって重要な前提条件である。
本研究は,CTおよびMRIスキャンから様々な臓器を抽出し,疾患を分類するための深層学習に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 3.268679466097746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately segmenting different organs from medical images is a critical prerequisite for computer-assisted diagnosis and intervention planning. This study proposes a deep learning-based approach for segmenting various organs from CT and MRI scans and classifying diseases. Our study introduces a novel technique integrating momentum within residual blocks for enhanced training dynamics in medical image analysis. We applied our method in two distinct tasks: segmenting liver, lung, & colon data and classifying abdominal pelvic CT and MRI scans. The proposed approach has shown promising results, outperforming state-of-the-art methods on publicly available benchmarking datasets. For instance, in the lung segmentation dataset, our approach yielded significant enhancements over the TransNetR model, including a 5.72% increase in dice score, a 5.04% improvement in mean Intersection over Union (mIoU), an 8.02% improvement in recall, and a 4.42% improvement in precision. Hence, incorporating momentum led to state-of-the-art performance in both segmentation and classification tasks, representing a significant advancement in the field of medical imaging.
- Abstract(参考訳): 医療画像から臓器を正確に分割することは、コンピュータによる診断と介入計画にとって重要な前提条件である。
本研究は,CTおよびMRIスキャンから様々な臓器を抽出し,疾患を分類するための深層学習に基づくアプローチを提案する。
本研究は, 医用画像解析におけるトレーニングダイナミクスの強化を目的とした, 残留ブロックに運動量を統合する新しい手法を提案する。
肝・肺・大腸データの分画と腹部CT・MRIの分類の2つの異なる課題に本法を適用した。
提案手法は有望な結果を示し、公開されているベンチマークデータセット上で最先端の手法より優れている。
例えば,肺分画データセットでは,5.72%のダイススコア,5.04%のmIoU,8.02%のリコール改善,4.42%の精度向上など,TransNetRモデルの大幅な改善が得られた。
したがって、運動量の導入は、セグメント化と分類作業の両方において最先端のパフォーマンスをもたらし、医用画像の分野での大きな進歩をもたらした。
関連論文リスト
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - Effective Segmentation of Post-Treatment Gliomas Using Simple Approaches: Artificial Sequence Generation and Ensemble Models [7.352034931666381]
本稿では,深層学習手法のセグメンテーション性能を高めるための2つの手法を提案する。
まず、利用可能なMRIシーケンスの単純な線形結合に基づく追加入力を組み込む。
第二に、モデルのバッテリの寄与を測るために様々なアンサンブル手法を用いる。
論文 参考訳(メタデータ) (2024-09-12T15:34:31Z) - AnatoMix: Anatomy-aware Data Augmentation for Multi-organ Segmentation [6.471203541258319]
本稿では,多臓器セグメンテーションデータセットの一般化性を高めるための新しいデータ拡張戦略を提案する。
オブジェクトレベルのマッチングと操作により,本手法は解剖学的に正しい画像を生成することができる。
拡張法は, ベースライン法74.8と比較して76.1ディスとなる。
論文 参考訳(メタデータ) (2024-03-05T21:07:50Z) - Adaptive Smooth Activation for Improved Disease Diagnosis and Organ
Segmentation from Radiology Scans [2.788038354941588]
本稿では,適応平滑化ユニット (ASAU) と呼ばれる新しいアクティベーション関数を提案する。
医学画像解析において, ASAU は, CT と MRI における自動疾患診断と臓器分割という, 重要かつ一般的に用いられる2つの一般的な課題に適用する。
論文 参考訳(メタデータ) (2023-11-29T07:16:55Z) - Contrastive and Selective Hidden Embeddings for Medical Image
Segmentation [25.80192874762209]
医用画像セグメンテーションのための対照的な学習ベース重み事前トレーニングを提案する。
不確実性を考慮した特徴選択ブロック(UAFS)と呼ばれる新しい構造は、少数機能による学習目標シフトを処理するように設計されている。
6つのドメインから8つのパブリックデータセットにまたがって、最先端の結果が得られます。
論文 参考訳(メタデータ) (2022-01-21T16:52:19Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
我々は,MRIボリュームの履歴を用いて,この問題をフル4次元ディープラーニングに拡張することで,性能が向上するかどうか検討する。
提案手法は, 病変側真陽性率0.84, 病変側偽陽性率0.19で従来手法より優れていた。
論文 参考訳(メタデータ) (2020-04-20T11:41:01Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。