論文の概要: Improving Adversarial Transferability with Neighbourhood Gradient Information
- arxiv url: http://arxiv.org/abs/2408.05745v1
- Date: Sun, 11 Aug 2024 10:46:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 15:47:38.629158
- Title: Improving Adversarial Transferability with Neighbourhood Gradient Information
- Title(参考訳): 隣接勾配情報による対向移動性の向上
- Authors: Haijing Guo, Jiafeng Wang, Zhaoyu Chen, Kaixun Jiang, Lingyi Hong, Pinxue Guo, Jinglun Li, Wenqiang Zhang,
- Abstract要約: ディープニューラルネットワーク(DNN)は、敵の例に影響を受けやすいため、パフォーマンスが著しく低下する。
本研究は、この性能ギャップを狭めるために、敵の例の転送可能性を高めることに焦点を当てる。
事例追跡と多重マスク戦略を取り入れたNGI-Attackを提案する。
- 参考スコア(独自算出の注目度): 20.55829486744819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are known to be susceptible to adversarial examples, leading to significant performance degradation. In black-box attack scenarios, a considerable attack performance gap between the surrogate model and the target model persists. This work focuses on enhancing the transferability of adversarial examples to narrow this performance gap. We observe that the gradient information around the clean image, i.e. Neighbourhood Gradient Information, can offer high transferability. Leveraging this, we propose the NGI-Attack, which incorporates Example Backtracking and Multiplex Mask strategies, to use this gradient information and enhance transferability fully. Specifically, we first adopt Example Backtracking to accumulate Neighbourhood Gradient Information as the initial momentum term. Multiplex Mask, which forms a multi-way attack strategy, aims to force the network to focus on non-discriminative regions, which can obtain richer gradient information during only a few iterations. Extensive experiments demonstrate that our approach significantly enhances adversarial transferability. Especially, when attacking numerous defense models, we achieve an average attack success rate of 95.8%. Notably, our method can plugin with any off-the-shelf algorithm to improve their attack performance without additional time cost.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、敵の例に影響を受けやすいことが知られており、性能が著しく低下する。
ブラックボックス攻撃のシナリオでは、サロゲートモデルとターゲットモデルの間の攻撃性能のかなりのギャップが持続する。
本研究は、この性能ギャップを狭めるために、敵の例の転送可能性を高めることに焦点を当てる。
クリーンな画像の周囲の勾配情報、すなわち近隣の勾配情報によって高い転送性が得られることを観察する。
本手法を応用したNGI-Attackでは,この勾配情報を使用し,転送性を完全に向上する。
具体的には,まず,近隣のグラディエント情報を初期モーメント用語として蓄積するために,事例追跡を採用する。
マルチウェイ攻撃戦略を形成するMultix Maskは、ネットワークを差別的でない領域に集中させ、ほんの数イテレーションでよりリッチな勾配情報を得ることができるようにする。
大規模な実験により,本手法は対向移動性を大幅に向上させることが示された。
特に、多数の防衛モデルを攻撃する場合、平均的な攻撃成功率は95.8%に達する。
特に,本手法は市販のアルゴリズムをプラグインして,追加の時間的コストを伴わずに攻撃性能を向上させることができる。
関連論文リスト
- Bag of Tricks to Boost Adversarial Transferability [5.803095119348021]
ホワイトボックス設定で生成された逆例は、しばしば異なるモデル間で低い転送可能性を示す。
そこで本研究では,既存の敵攻撃の微妙な変化が攻撃性能に大きく影響することを発見した。
既存の敵攻撃の綿密な研究に基づいて、敵の移動性を高めるためのトリックの袋を提案する。
論文 参考訳(メタデータ) (2024-01-16T17:42:36Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
GAN(Generative Adversarial Networks)のような逆生成モデルは、様々な種類のデータを生成するために広く応用されている。
本研究では, GE-AdvGAN という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T16:43:16Z) - Sampling-based Fast Gradient Rescaling Method for Highly Transferable
Adversarial Attacks [18.05924632169541]
サンプリングに基づく高速勾配再スケーリング法(S-FGRM)を提案する。
具体的には、余分な計算コストを伴わずに手話関数を置換するためにデータ再スケーリングを用いる。
本手法は, 勾配に基づく攻撃の伝達可能性を大幅に向上させ, 最先端のベースラインより優れる可能性がある。
論文 参考訳(メタデータ) (2023-07-06T07:52:42Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Improving Adversarial Transferability with Scheduled Step Size and Dual
Example [33.00528131208799]
反復型高速勾配符号法により生じる逆例の転送性は,反復数の増加に伴って低下傾向を示すことを示す。
本稿では,スケジューリングステップサイズとデュアルサンプル(SD)を用いて,良性サンプル近傍の対角情報を完全に活用する新しい戦略を提案する。
提案手法は,既存の対向攻撃手法と容易に統合でき,対向移動性が向上する。
論文 参考訳(メタデータ) (2023-01-30T15:13:46Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Adaptive Perturbation for Adversarial Attack [50.77612889697216]
そこで本研究では,新たな逆例に対する勾配に基づく攻撃手法を提案する。
逆方向の摂動を発生させるために,スケーリング係数を用いた正確な勾配方向を用いる。
本手法は, 高い伝達性を示し, 最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-27T07:57:41Z) - Enhancing the Transferability of Adversarial Attacks through Variance
Tuning [6.5328074334512]
反復勾配に基づく攻撃手法のクラスを強化するための分散チューニングと呼ばれる新しい方法を提案する。
標準のImageNetデータセットを用いた実験結果から,勾配に基づく敵攻撃の転送性を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2021-03-29T12:41:55Z) - Boosting Adversarial Transferability through Enhanced Momentum [50.248076722464184]
深層学習モデルは、人間の知覚できない摂動を良心的なイメージに加えることで、敵の例に弱い。
さまざまな運動量反復勾配に基づく方法が逆転性を改善するのに有効であることが示されている。
本稿では,逆伝達性をさらに高めるために,運動量反復勾配に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-19T03:10:32Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。