Reference-free Hallucination Detection for Large Vision-Language Models
- URL: http://arxiv.org/abs/2408.05767v2
- Date: Tue, 19 Nov 2024 13:22:21 GMT
- Title: Reference-free Hallucination Detection for Large Vision-Language Models
- Authors: Qing Li, Jiahui Geng, Chenyang Lyu, Derui Zhu, Maxim Panov, Fakhri Karray,
- Abstract summary: Large vision-language models (LVLMs) have made significant progress in recent years.
LVLMs exhibit excellent ability in language understanding, question answering, and conversations of visual inputs.
They are prone to producing hallucinations.
Several methods are proposed to evaluate the hallucinations in LVLMs, most are reference-based and depend on external tools.
- Score: 19.36348897433261
- License:
- Abstract: Large vision-language models (LVLMs) have made significant progress in recent years. While LVLMs exhibit excellent ability in language understanding, question answering, and conversations of visual inputs, they are prone to producing hallucinations. While several methods are proposed to evaluate the hallucinations in LVLMs, most are reference-based and depend on external tools, which complicates their practical application. To assess the viability of alternative methods, it is critical to understand whether the reference-free approaches, which do not rely on any external tools, can efficiently detect hallucinations. Therefore, we initiate an exploratory study to demonstrate the effectiveness of different reference-free solutions in detecting hallucinations in LVLMs. In particular, we conduct an extensive study on three kinds of techniques: uncertainty-based, consistency-based, and supervised uncertainty quantification methods on four representative LVLMs across two different tasks. The empirical results show that the reference-free approaches are capable of effectively detecting non-factual responses in LVLMs, with the supervised uncertainty quantification method outperforming the others, achieving the best performance across different settings.
Related papers
- VL-Uncertainty: Detecting Hallucination in Large Vision-Language Model via Uncertainty Estimation [18.873512856021357]
We introduce VL-Uncertainty, the first uncertainty-based framework for detecting hallucinations in large vision-language models.
We measure uncertainty by analyzing the prediction variance across semantically equivalent but perturbed prompts.
When LVLMs are highly confident, they provide consistent responses to semantically equivalent queries.
But, when uncertain, the responses of the target LVLM become more random.
arXiv Detail & Related papers (2024-11-18T04:06:04Z) - LLM Hallucination Reasoning with Zero-shot Knowledge Test [10.306443936136425]
We introduce a new task, Hallucination Reasoning, which classifies LLM-generated text into one of three categories: aligned, misaligned, and fabricated.
Our experiments conducted on new datasets demonstrate the effectiveness of our method in hallucination reasoning.
arXiv Detail & Related papers (2024-11-14T18:55:26Z) - Alleviating Hallucination in Large Vision-Language Models with Active Retrieval Augmentation [21.31915988262898]
We introduce a novel framework, the Active Retrieval-Augmented large vision-language model (ARA), specifically designed to address hallucinations.
Our empirical observations suggest that by utilizing fitting retrieval mechanisms and timing the retrieval judiciously, we can effectively mitigate the hallucination problem.
arXiv Detail & Related papers (2024-08-01T13:38:58Z) - KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking [55.2155025063668]
KnowHalu is a novel approach for detecting hallucinations in text generated by large language models (LLMs)
It uses step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism.
Our evaluations demonstrate that KnowHalu significantly outperforms SOTA baselines in detecting hallucinations across diverse tasks.
arXiv Detail & Related papers (2024-04-03T02:52:07Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - Zero-Resource Hallucination Prevention for Large Language Models [45.4155729393135]
"Hallucination" refers to instances where large language models (LLMs) generate factually inaccurate or ungrounded information.
We introduce a novel pre-language self-evaluation technique, referred to as SELF-FAMILIARITY, which focuses on evaluating the model's familiarity with the concepts present in the input instruction.
We validate SELF-FAMILIARITY across four different large language models, demonstrating consistently superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-09-06T01:57:36Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
This work presents the first systematic study on object hallucination of large vision-language models (LVLMs)
We find that LVLMs tend to generate objects that are inconsistent with the target images in the descriptions.
We propose a polling-based query method called POPE to evaluate the object hallucination.
arXiv Detail & Related papers (2023-05-17T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.