論文の概要: LLM-Based Robust Product Classification in Commerce and Compliance
- arxiv url: http://arxiv.org/abs/2408.05874v2
- Date: Tue, 15 Oct 2024 16:18:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 11:49:24.867589
- Title: LLM-Based Robust Product Classification in Commerce and Compliance
- Title(参考訳): 商業・コンプライアンスにおけるLCMによるロバスト製品分類
- Authors: Sina Gholamian, Gianfranco Romani, Bartosz Rudnikowicz, Stavroula Skylaki,
- Abstract要約: 本研究では,産業分類の現実的な課題を探求し,現実的なデータシミュレーションを可能にするデータ摂動を提案する。
本研究は、文脈内学習を用いたLLMが、クリーンデータシナリオにおける教師ありアプローチよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Product classification is a crucial task in international trade, as compliance regulations are verified and taxes and duties are applied based on product categories. Manual classification of products is time-consuming and error-prone, and the sheer volume of products imported and exported renders the manual process infeasible. Consequently, e-commerce platforms and enterprises involved in international trade have turned to automatic product classification using machine learning. However, current approaches do not consider the real-world challenges associated with product classification, such as very abbreviated and incomplete product descriptions. In addition, recent advancements in generative Large Language Models (LLMs) and their reasoning capabilities are mainly untapped in product classification and e-commerce. In this research, we explore the real-life challenges of industrial classification and we propose data perturbations that allow for realistic data simulation. Furthermore, we employ LLM-based product classification to improve the robustness of the prediction in presence of incomplete data. Our research shows that LLMs with in-context learning outperform the supervised approaches in the clean-data scenario. Additionally, we illustrate that LLMs are significantly more robust than the supervised approaches when data attacks are present.
- Abstract(参考訳): 商品分類は、コンプライアンス規則が検証され、製品カテゴリーに基づいて税や義務が適用されるため、国際貿易において重要な課題である。
製品の手動分類は時間がかかり、エラーが発生しやすいため、輸入・輸出された製品の膨大な量は手動の処理を不可能にしている。
その結果、国際貿易に関わる電子商取引プラットフォームや企業は、機械学習を用いた自動製品分類に移行した。
しかし、現在のアプローチでは、非常に簡潔で不完全な製品記述など、製品分類に関連する現実的な課題は考慮されていない。
さらに, 生成型大規模言語モデル (LLMs) の最近の進歩とその推論能力は, 製品分類や電子商取引にはほとんど及ばない。
本研究では,産業分類の現実的な課題について考察し,現実的なデータシミュレーションを可能にするデータ摂動を提案する。
さらに,不完全なデータが存在する場合の予測の堅牢性を向上させるため,LCMに基づく製品分類を採用する。
本研究は、文脈内学習を用いたLLMが、クリーンデータシナリオにおける教師ありアプローチよりも優れていることを示す。
さらに、データアタックが存在する場合、LLMは教師付きアプローチよりもはるかに堅牢であることを示す。
関連論文リスト
- Boosting LLM-based Relevance Modeling with Distribution-Aware Robust Learning [14.224921308101624]
本稿では,関係モデリングのための新しい分布認識ロバスト学習フレームワーク(DaRL)を提案する。
DaRLはAlipayの保険商品検索のためにオンラインで展開されている。
論文 参考訳(メタデータ) (2024-12-17T03:10:47Z) - LLMs for Generalizable Language-Conditioned Policy Learning under Minimal Data Requirements [50.544186914115045]
本稿では,オフライン言語によるポリシー学習のための新しいトレーニングパイプラインTEDUOを提案する。
TEDUOは、分かりやすい、ラベルなしのデータセットを運用し、いわゆるインザワイルド評価(in-the-wild evaluation)に適している。
論文 参考訳(メタデータ) (2024-12-09T18:43:56Z) - CPRM: A LLM-based Continual Pre-training Framework for Relevance Modeling in Commercial Search [34.08551439233784]
CPRMは、大規模言語モデル(LLM)の継続的な事前訓練のために設計されたフレームワークである
本フレームワークは3つのモジュールから構成される: 1) クエリとマルチフィールドアイテムを併用してドメイン知識を強化する,2) コンテキスト内事前学習を適用する,3) 関連するドメイン知識とバックグラウンド情報を生成する,という3つのモジュール。
論文 参考訳(メタデータ) (2024-12-02T08:35:54Z) - PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs [31.16117964915814]
訓練済みまたは微調整済みのモデルに格納された特定のデータを消去しようとする機械学習は、LLMにとって重要な保護措置として登場した。
構造的アンラーニング手法の開発を容易にするため,マルチシナリオデータセットをコンパイルするパイプラインであるPISTOLを提案する。
Llama2-7BモデルとMistral-7Bモデルの両方で4つの異なる未学習手法を用いてベンチマークを行う。
論文 参考訳(メタデータ) (2024-06-24T17:22:36Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
本稿では,大規模な言語モデルにおけるセーフガードを評価するための,最初のオープンソースデータセットを収集する。
我々は、自動安全性評価において、GPT-4に匹敵する結果を得るために、BERTライクな分類器をいくつか訓練する。
論文 参考訳(メタデータ) (2023-08-25T14:02:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。