論文の概要: LLM-Based Robust Product Classification in Commerce and Compliance
- arxiv url: http://arxiv.org/abs/2408.05874v2
- Date: Tue, 15 Oct 2024 16:18:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 11:49:24.867589
- Title: LLM-Based Robust Product Classification in Commerce and Compliance
- Title(参考訳): 商業・コンプライアンスにおけるLCMによるロバスト製品分類
- Authors: Sina Gholamian, Gianfranco Romani, Bartosz Rudnikowicz, Stavroula Skylaki,
- Abstract要約: 本研究では,産業分類の現実的な課題を探求し,現実的なデータシミュレーションを可能にするデータ摂動を提案する。
本研究は、文脈内学習を用いたLLMが、クリーンデータシナリオにおける教師ありアプローチよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Product classification is a crucial task in international trade, as compliance regulations are verified and taxes and duties are applied based on product categories. Manual classification of products is time-consuming and error-prone, and the sheer volume of products imported and exported renders the manual process infeasible. Consequently, e-commerce platforms and enterprises involved in international trade have turned to automatic product classification using machine learning. However, current approaches do not consider the real-world challenges associated with product classification, such as very abbreviated and incomplete product descriptions. In addition, recent advancements in generative Large Language Models (LLMs) and their reasoning capabilities are mainly untapped in product classification and e-commerce. In this research, we explore the real-life challenges of industrial classification and we propose data perturbations that allow for realistic data simulation. Furthermore, we employ LLM-based product classification to improve the robustness of the prediction in presence of incomplete data. Our research shows that LLMs with in-context learning outperform the supervised approaches in the clean-data scenario. Additionally, we illustrate that LLMs are significantly more robust than the supervised approaches when data attacks are present.
- Abstract(参考訳): 商品分類は、コンプライアンス規則が検証され、製品カテゴリーに基づいて税や義務が適用されるため、国際貿易において重要な課題である。
製品の手動分類は時間がかかり、エラーが発生しやすいため、輸入・輸出された製品の膨大な量は手動の処理を不可能にしている。
その結果、国際貿易に関わる電子商取引プラットフォームや企業は、機械学習を用いた自動製品分類に移行した。
しかし、現在のアプローチでは、非常に簡潔で不完全な製品記述など、製品分類に関連する現実的な課題は考慮されていない。
さらに, 生成型大規模言語モデル (LLMs) の最近の進歩とその推論能力は, 製品分類や電子商取引にはほとんど及ばない。
本研究では,産業分類の現実的な課題について考察し,現実的なデータシミュレーションを可能にするデータ摂動を提案する。
さらに,不完全なデータが存在する場合の予測の堅牢性を向上させるため,LCMに基づく製品分類を採用する。
本研究は、文脈内学習を用いたLLMが、クリーンデータシナリオにおける教師ありアプローチよりも優れていることを示す。
さらに、データアタックが存在する場合、LLMは教師付きアプローチよりもはるかに堅牢であることを示す。
関連論文リスト
- PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs [31.16117964915814]
訓練済みまたは微調整済みのモデルに格納された特定のデータを消去しようとする機械学習は、LLMにとって重要な保護措置として登場した。
構造的アンラーニング手法の開発を容易にするため,マルチシナリオデータセットをコンパイルするパイプラインであるPISTOLを提案する。
Llama2-7BモデルとMistral-7Bモデルの両方で4つの異なる未学習手法を用いてベンチマークを行う。
論文 参考訳(メタデータ) (2024-06-24T17:22:36Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - FairSISA: Ensemble Post-Processing to Improve Fairness of Unlearning in
LLMs [6.689848416609951]
大規模言語モデル(LLM)における未学習と公平性の相互作用について検討する。
我々は、SISAとして知られる人気のある非学習フレームワークに焦点を当て、非結合シャードで訓練されたモデルのアンサンブルを作成する。
SISAによるアンサンブルモデルに対する後処理バイアス軽減手法を提案する。
論文 参考訳(メタデータ) (2023-12-12T16:44:47Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
本稿では,大規模な言語モデルにおけるセーフガードを評価するための,最初のオープンソースデータセットを収集する。
我々は、自動安全性評価において、GPT-4に匹敵する結果を得るために、BERTライクな分類器をいくつか訓練する。
論文 参考訳(メタデータ) (2023-08-25T14:02:12Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。