Integrative Approaches in Cybersecurity and AI
- URL: http://arxiv.org/abs/2408.05888v1
- Date: Mon, 12 Aug 2024 01:37:06 GMT
- Title: Integrative Approaches in Cybersecurity and AI
- Authors: Marwan Omar,
- Abstract summary: We identify key trends, challenges, and future directions that hold the potential to revolutionize the way organizations protect, analyze, and leverage their data.
Our findings highlight the necessity of cross-disciplinary strategies that incorporate AI-driven automation, real-time threat detection, and advanced data analytics to build more resilient and adaptive security architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the convergence of cybersecurity, artificial intelligence (AI), and data management has emerged as a critical area of research, driven by the increasing complexity and interdependence of modern technological ecosystems. This paper provides a comprehensive review and analysis of integrative approaches that harness AI techniques to enhance cybersecurity frameworks and optimize data management practices. By exploring the synergies between these domains, we identify key trends, challenges, and future directions that hold the potential to revolutionize the way organizations protect, analyze, and leverage their data. Our findings highlight the necessity of cross-disciplinary strategies that incorporate AI-driven automation, real-time threat detection, and advanced data analytics to build more resilient and adaptive security architectures.
Related papers
- SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence.
This paper conceptualizes cybersafety and cybersecurity in the context of multimodal learning.
We present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats.
arXiv Detail & Related papers (2024-11-17T23:06:20Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - WISDOM: An AI-powered framework for emerging research detection using weak signal analysis and advanced topic modeling [1.8434042562191815]
We present an automated artificial intelligence-enabled framework, called WISDOM, for detecting emerging research themes.
WISDOM detects emerging research themes using advanced topic modeling and weak signal analysis.
We assess WISDOM's performance in identifying emerging research as well as their trends, in the field of underwater sensing technologies.
arXiv Detail & Related papers (2024-09-09T18:08:08Z) - Systematic Literature Review of AI-enabled Spectrum Management in 6G and Future Networks [29.38890315823053]
There's a gap in consolidating AI-enabled Spectrum Management advancements.
Traditional spectrum management methods are inadequate for 6G due to its dynamic and complex demands.
Findings reveal challenges such as under-explored AI usage in critical AISM systems.
arXiv Detail & Related papers (2024-06-12T11:31:42Z) - Bridging the Gap: A Study of AI-based Vulnerability Management between Industry and Academia [4.4037442949276455]
Recent research advances in Artificial Intelligence (AI) have yielded promising results for automated software vulnerability management.
The industry remains very cautious and selective about integrating AI-based techniques into their security vulnerability management workflow.
We propose a set of future directions to help better understand industry expectations, improve the practical usability of AI-based security vulnerability research, and drive a synergistic relationship between industry and academia.
arXiv Detail & Related papers (2024-05-03T19:00:50Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
We propose a novel approach that introduces three metrics: System Complexity Index (SCI), Lyapunov Exponent for AI Stability (LEAIS), and Nash Equilibrium Robustness (NER)
SCI quantifies the inherent complexity of an AI system, LEAIS captures its stability and sensitivity to perturbations, and NER evaluates its strategic robustness against adversarial manipulation.
arXiv Detail & Related papers (2024-04-07T07:05:59Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.