AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis
- URL: http://arxiv.org/abs/2401.10895v5
- Date: Thu, 27 Feb 2025 22:51:32 GMT
- Title: AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis
- Authors: Md Abrar Jahin, Saleh Akram Naife, Anik Kumar Saha, M. F. Mridha,
- Abstract summary: This study examines 1,903 articles from Google Scholar and Web of Science, with 54 studies selected through PRISMA guidelines.<n>Our findings reveal that ML models, including Random Forest, XGBoost, and hybrid approaches, significantly enhance risk prediction accuracy and adaptability in post-pandemic contexts.<n>The study underscores the necessity of dynamic strategies, interdisciplinary collaboration, and continuous model evaluation to address challenges such as data quality and interpretability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supply chain risk assessment (SCRA) is pivotal for ensuring resilience in increasingly complex global supply networks. While existing reviews have explored traditional methodologies, they often neglect emerging artificial intelligence (AI) and machine learning (ML) applications and mostly lack combined systematic and bibliometric analyses. This study addresses these gaps by integrating a systematic literature review with bibliometric analysis, examining 1,903 articles (2015-2025) from Google Scholar and Web of Science, with 54 studies selected through PRISMA guidelines. Our findings reveal that ML models, including Random Forest, XGBoost, and hybrid approaches, significantly enhance risk prediction accuracy and adaptability in post-pandemic contexts. The bibliometric analysis identifies key trends, influential authors, and institutional contributions, highlighting China and the United States as leading research hubs. Practical insights emphasize the integration of explainable AI (XAI) for transparent decision-making, real-time data utilization, and blockchain for traceability. The study underscores the necessity of dynamic strategies, interdisciplinary collaboration, and continuous model evaluation to address challenges such as data quality and interpretability. By synthesizing AI-driven methodologies with resilience frameworks, this review provides actionable guidance for optimizing supply chain risk management, fostering adaptability, and informing future research in evolving risk landscapes.
Related papers
- Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
This paper presents a novel quantitative approach to shed light on the complex information dynamics arising from the growing use of generative AI tools.
We propose a model to characterize the generation, indexing, and dissemination of information in response to new topics.
Our findings suggest that the rapid pace of generative AI adoption, combined with increasing user reliance, can outpace human verification, escalating the risk of inaccurate information proliferation.
arXiv Detail & Related papers (2025-04-29T10:21:40Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - A Survey on Vulnerability Prioritization: Taxonomy, Metrics, and Research Challenges [20.407534993667607]
Resource constraints necessitate effective vulnerability prioritization strategies.
This paper introduces a novel taxonomy that categorizes metrics into severity, exploitability, contextual factors, predictive indicators, and aggregation methods.
arXiv Detail & Related papers (2025-02-16T10:33:37Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
Methods for detecting AI-generated media have evolved rapidly.
General-purpose detectors based on MLLMs integrate authenticity verification, explainability, and localization capabilities.
Ethical and security considerations have emerged as critical global concerns.
arXiv Detail & Related papers (2025-02-07T12:18:20Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
We propose a methodology leveraging Natural Language Processing (NLP) to associate Common Vulnerabilities and Exposure (CAPEC) vulnerabilities with Common Attack Patternion and Classification (CAPEC) attack patterns.
Experimental evaluations demonstrate superior performance compared to state-of-the-art models.
arXiv Detail & Related papers (2025-01-13T08:39:52Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
The ever-evolving technological landscape offers both opportunities and threats, creating a dynamic space where chaos and order compete.
Secure software engineering (SSE) must continuously address vulnerabilities that endanger software systems.
This thesis seeks to bring order to the chaos in SSE by addressing domain-specific differences that impact AI accuracy.
arXiv Detail & Related papers (2025-01-09T11:38:58Z) - Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
Large Language Models (LLMs), powered by advanced generative AI, have emerged as transformative tools.
This study systematically maps the literature on the use of LLMs for qualitative research.
Findings reveal that LLMs are utilized across diverse fields, demonstrating the potential to automate processes.
arXiv Detail & Related papers (2024-11-18T21:28:00Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - Socio-Economic Consequences of Generative AI: A Review of Methodological Approaches [0.0]
We identify the primary methodologies that may be used to help predict the economic and social impacts of generative AI adoption.
Through a comprehensive literature review, we uncover a range of methodologies poised to assess the multifaceted impacts of this technological revolution.
arXiv Detail & Related papers (2024-11-14T09:40:25Z) - Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR)
It highlights the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes.
The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
arXiv Detail & Related papers (2024-11-03T18:01:50Z) - AI for ERW Detection in Clearance Operations -- The State of Research [12.278116747610158]
This article provides a literature review of academic research on AI for ERW detection for clearance operations.
It finds that research can be grouped into two main streams, AI for ERW object detection and AI for ERW risk prediction.
We develop three opportunities for future research, including a call for renewed efforts in the use of AI for ERW risk prediction.
arXiv Detail & Related papers (2024-10-31T11:50:29Z) - Machine Learning for Missing Value Imputation [0.0]
The main objective of this article is to conduct a comprehensive and rigorous review, as well as analysis, of the state-of-the-art machine learning applications in Missing Value Imputation.
More than 100 articles published between 2014 and 2023 are critically reviewed, considering the methods and findings.
The latest literature is examined to scrutinize the trends in MVI methods and their evaluation.
arXiv Detail & Related papers (2024-10-10T18:56:49Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
Bibliometric analysis is essential for understanding research trends, scope, and impact in urban science.
Traditional methods, relying on keyword searches, often fail to uncover valuable insights not explicitly stated in article titles or keywords.
We leverage Generative AI models, specifically transformers and Retrieval-Augmented Generation (RAG), to automate and enhance bibliometric analysis.
arXiv Detail & Related papers (2024-10-08T05:13:27Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Harnessing AI for efficient analysis of complex policy documents: a case study of Executive Order 14110 [44.99833362998488]
Policy documents, such as legislation, regulations, and executive orders, are crucial in shaping society.
This study aims to evaluate the potential of AI in streamlining policy analysis and to identify the strengths and limitations of current AI approaches.
arXiv Detail & Related papers (2024-06-10T11:19:28Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Unleashing the Power of AI. A Systematic Review of Cutting-Edge Techniques in AI-Enhanced Scientometrics, Webometrics, and Bibliometrics [1.2374541748245838]
The study aims to analyze the synergy of Artificial Intelligence (AI) with scientometrics, webometrics, and bibliometrics.
Our aim is to explore the potential of AI in revolutionizing the methods used to measure and analyze scholarly communication.
arXiv Detail & Related papers (2024-02-22T15:10:02Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques [3.265458968159693]
The review is based on 220 scientific articles published between January 2019 and March 2024.
The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities.
arXiv Detail & Related papers (2023-09-27T19:22:19Z) - Unified Risk Analysis for Weakly Supervised Learning [65.75775694815172]
We introduce a framework providing a comprehensive understanding and a unified methodology for weakly supervised learning.
The formulation component of the framework, leveraging a contamination perspective, provides a unified interpretation of how weak supervision is formed.
The analysis component of the framework, viewed as a decontamination process, provides a systematic method of conducting risk rewrite.
arXiv Detail & Related papers (2023-09-15T07:30:15Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.