論文の概要: ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers
- arxiv url: http://arxiv.org/abs/2408.06040v1
- Date: Mon, 12 Aug 2024 10:15:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 13:23:51.980187
- Title: ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers
- Title(参考訳): ARPA:大規模言語モデルとトランスフォーマーを用いた視覚的単語の曖昧性向上のためのハイブリッドモデル
- Authors: Aristi Papastavrou, Maria Lymperaiou, Giorgos Stamou,
- Abstract要約: 変換器の高度な特徴抽出機能を備えた大規模言語モデルの非並列的文脈理解を融合したアーキテクチャであるARPAを提案する。
ARPAの導入は、視覚的単語の曖昧さにおいて重要なマイルストーンであり、魅力的なソリューションを提供する。
我々は研究者や実践者たちに、このようなハイブリッドモデルが人工知能の先例のない進歩を後押しする未来を想像して、我々のモデルの能力を探求するよう依頼する。
- 参考スコア(独自算出の注目度): 1.6541870997607049
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the rapidly evolving fields of natural language processing and computer vision, Visual Word Sense Disambiguation (VWSD) stands as a critical, yet challenging task. The quest for models that can seamlessly integrate and interpret multimodal data is more pressing than ever. Imagine a system that can understand language with the depth and nuance of human cognition, while simultaneously interpreting the rich visual context of the world around it. We present ARPA, an architecture that fuses the unparalleled contextual understanding of large language models with the advanced feature extraction capabilities of transformers, which then pass through a custom Graph Neural Network (GNN) layer to learn intricate relationships and subtle nuances within the data. This innovative architecture not only sets a new benchmark in visual word disambiguation but also introduces a versatile framework poised to transform how linguistic and visual data interact by harnessing the synergistic strengths of its components, ensuring robust performance even in the most complex disambiguation scenarios. Through a series of experiments and comparative analysis, we reveal the substantial advantages of our model, underscoring its potential to redefine standards in the field. Beyond its architectural prowess, our architecture excels through experimental enrichments, including sophisticated data augmentation and multi-modal training techniques. ARPA's introduction marks a significant milestone in visual word disambiguation, offering a compelling solution that bridges the gap between linguistic and visual modalities. We invite researchers and practitioners to explore the capabilities of our model, envisioning a future where such hybrid models drive unprecedented advancements in artificial intelligence.
- Abstract(参考訳): 自然言語処理とコンピュータビジョンの急速に発展する分野において、Visual Word Sense Disambiguation (VWSD) は批判的だが難しい課題である。
シームレスに統合し、マルチモーダルデータを解釈できるモデルの探求は、これまで以上に迫っている。
人間の認識の深さとニュアンスで言語を理解することができるシステムを想像してみてほしい。
変換器の高度な特徴抽出機能を備えた大規模言語モデルの非並列的文脈理解を融合したアーキテクチャであるARPAを、独自のグラフニューラルネットワーク(GNN)層を通過して、データ内の複雑な関係や微妙なニュアンスを学習する。
この革新的なアーキテクチャは、視覚的単語の曖昧さの新しいベンチマークを設定するだけでなく、コンポーネントの相乗的強みを活用し、最も複雑な曖昧さのシナリオにおいても堅牢なパフォーマンスを確保することによって、言語的および視覚的データの相互作用を変革する万能なフレームワークも導入している。
一連の実験と比較分析を通じて、我々のモデルの実質的な利点を明らかにし、この分野における標準を再定義する可能性を明らかにする。
私たちのアーキテクチャは、そのアーキテクチャだけでなく、高度なデータ拡張やマルチモーダルトレーニング技術など、実験的な拡張を通じて優れています。
ARPAの導入は、言語と視覚のモダリティのギャップを埋める魅力的なソリューションを提供する、視覚的な単語の曖昧さにおいて重要なマイルストーンとなる。
我々は研究者や実践者たちに、このようなハイブリッドモデルが人工知能の先例のない進歩を後押しする未来を想像して、我々のモデルの能力を探求するよう依頼する。
関連論文リスト
- Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models [37.44286562901589]
本研究では,空間推論の多様な側面をカバーする新しいベンチマークであるSpatialEvalを提案する。
我々は、競合する言語と視覚言語モデルを総合的に評価する。
文献で見過ごされてきたいくつかの反直感的な洞察が明らかとなった。
論文 参考訳(メタデータ) (2024-06-21T03:53:37Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - LanGWM: Language Grounded World Model [24.86620763902546]
我々は,世界モデル学習を強化するために,言語による視覚的特徴を学習することに注力する。
提案手法は,人間とロボットの相互作用モデルを改善する可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-29T12:41:55Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Visually-Situated Natural Language Understanding with Contrastive
Reading Model and Frozen Large Language Models [24.456117679941816]
Contrastive Reading Model (Cream)は、Large Language Models (LLM)の言語画像理解能力を高めるために設計された、新しいニューラルネットワークである。
我々のアプローチは、視覚と言語理解のギャップを埋め、より洗練されたドキュメントインテリジェンスアシスタントの開発の道を開く。
論文 参考訳(メタデータ) (2023-05-24T11:59:13Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - OmDet: Large-scale vision-language multi-dataset pre-training with
multimodal detection network [17.980765138522322]
この研究は、新しい言語対応のオブジェクト検出アーキテクチャであるOmDetを紹介した。
自然言語を普遍的な知識表現として活用することで、OmDetは多様なデータセットから"視覚語彙"を蓄積する。
我々は,OmDetが野生におけるオブジェクト検出,オープンボキャブラリ検出,句接地において,強いベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-10T14:25:14Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Neurosymbolic AI for Situated Language Understanding [13.249453757295083]
我々は,これらの学習課題に対する解法として,計算位置定位法が有効であると主張している。
我々のモデルは、古典的なAIの考えをニューロシンボリックインテリジェンス(英語版)の枠組みに再組み入れている。
我々は、さまざまなAI学習課題に対して、位置情報が多様なデータと複数のレベルのモデリングを提供する方法について論じる。
論文 参考訳(メタデータ) (2020-12-05T05:03:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。